NAVAL POSTGRADUATE SCHOOL @
Monterey, California

D-A249 332
R

DTIC

BLECTE
APR28 1992 ‘

e

THESIS

IMPLEMENTING RELATIONAL OPERATIONS
IN AN
OBJECT-ORIENTED DATABASE
by
Stephen C. Filippi
March 1992

Thesis Advisor: Michael L. Nelson
Co-Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

92- 10721
’2 4 24 1357? U

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPOR URITY CLASS! ATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

S CURNY CLASSIFICATION AUTHOR 3. DISTRIBUTION/AVAILABILITY OF REPORT
. TSRS W LTR Approved for public release;
2. DECLASSIFICATIC ADING SCHEDULE distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
5a. NAME OF PERFORMING ORGANIZATION] 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (i applicable) Naval Postgraduate School
Naval Postgraduate School 37
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

UNDING/ IN [8b. OFFICE SYMBOL | 9. NT T MENT \DENTIFICATI

8. ORCANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS
PROGRA PROJECT TASK WORK UNIT
ELEMENTNO. |NO. NO. ACCESSION NO
11. TITLE (Include Secunity Classification)
IMPLEMENTING RELATIONAL OPERATIONS IN AN OBJECT-ORIENTED DATABASE (U)
I 12. PERSONAL AUTHOR(3)

Filippi, Stephen Charles
ﬁa 13b. 10 14. DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT

aster’s ems FROM TO; 1992, March 176

| 76 SUPPLEMENTARY NOTATION e views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP sus-GrouP | OBJECT-ORIENTED, DATABASES, RELATIONAL DATABASES

I
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis expands the concepts of relational/object-oriented database systems. There are two different approaches
to combining relational and object-oriented databases. This thesis takes the approach of adding relational operations
to an object-oriented database rather than building an object-oriented layer on top of an existing relational database.

The system proposed in this thesis was developed in the object-oriented programming language Prograph. It was
chosen because it contains primitive operations for reading and writing database files to secondary storage and for
manipulating complex data types (e.g., sounds, and pictures).

This thesis demonstrates that the limitations of current systems can be remedied and that the relational/object-ori-
ented database management system is indeed a feasible solution.

20, DISTRIBUTION/AVATLABILTTY OF ABSTRACT 27, ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED [] SAME ASRPT. [] DTIC USERS| UNCLASSIFIED

" NAME OF FESPPNSIBLE TNDIVIGUAL 22b. JELEPHONE (Include Area Code) | 22¢
ﬁﬁq.ﬁ‘c‘ﬁae"f E.gﬂ‘:?son, USAF (4Ud) 046-2026) ¢
DA
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obs?leto UNCLASSIFIED
1

Approved for public release; distribution is unlimited

Implementing Relational Operations
in an
Object-Oriented Database

by
Stephen Charles Filippi
Lieutenant, United States Navy
B.S., Jacksonville University, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 1992

o S LTS

hen Charles F"'ilippi i

Approved By: /47 M;\/// A M»\

Michael L. Nelson , Thesis Advisor

e

C. Thomas %Co-Advisor

g 00 [\3“_,.!/\]/\
}f‘Robert B. M‘?JGS Chairman,

Department of Computer Science

ii

ABSTRACT

This thesis expands the concepts of relational/object-oriented database systems.
There are two different approaches to combining relational and object-oriented
databases. This thesis takes the approach of adding relational operations to an
object-oriented database rather than building an object-oriented layer on top of an
existing relational database.

The system proposed in this thesis was developed in the object-oriented
programming language Prograph. It was chosen because it contains primitive
operations for reading and writing database files to secondary storage and for
manipulating complex data types (e.g., sounds, and pictures).

This thesis demonstrates that the limitations of current systems can be remedied
and that the relational/object-oriented database management system is indeed a

feasible solution.

Accuss_lon Tor

RTIS GRARI V_

DTIC TAB 0
Unstunhouticed 0
Justificat) ot
BY.

[Diateibotiony

| lmi_l_g{:lilty Codes
Avall amifor
Bist Speetal

iii

Table of Contents

L. INTRODUCTIONrensccnnceisstnienistessssssesssssssessssssssssantasssssssssass 1
II. SURVEY OF THE LITERATUREcccocniniininninenienisenssssessssssnsnnesss 4
A. OBJECT-ORIENTED PROGRAMMING........ccocrviiiiriirnnerirennnacessesenes 4

1. Classes and ODJECLScccereirecriencenctsenissesiesesensnesesesseseesessessssnssssssnens 5

2. INhEritancecccoeerueereerrerressessssssessanesansssnessesosassssssssesssassssesasessss soseas 8

3. Encapsulation............ccuuiieieerercocinniencnnsseicssessisnsssssesesssscssaesacssssans 12

4, REUSADIILYc.ooviinieiriereeee e ercseesecne e steeeseesae st seas st e ssessaasnesvansnnenns 13

S. POlymMOIPRISI.ccouiriiiitiiiciecreseeteeccee e seeee et et e e ses s eaesessessaesens 14

B. DATABASE MANAGEMENT SYSTEMS ...t 15

1. Basic TerminolOogycccucvvivemvisicnieninicieenennessesie e sesacennesesnnesassnennes 16

2. Relational Databases..............ccvevierierreenuenensenenesteseensnssensesssrassesssesssenns 17

a. Relational Algebra............ccccvninnininincniininnctetcece e 19

b. Limitations of Relational Databasescccccoccevmrreenrersrerrenneeesennne. 22

3. Object-Oriented Databasescccecveeereernnrenreriecsesessessearssesesssessenses 23

4. Relational/Object-Oriented Databases..........cccccveeerveerieenneneccreeseeciennnn. 25

C. PROGRAPH ...ttt estsstssesesssssssassassessessssnsessansssansan 26

1. The LANGUAEEcuooieeieciisiniiicciecctininesssnaesssssnesnessestessesssnsnnns 27

B. ClASSES.....cceeuierireeriierirtese et e st ssese e se st eseenes et eressessassssessessssassans 29

D, ATIDULESceeiuieeitieiciece et et eesestes e st sresse e sneese e sesstassassnsnsenns 30

C. MEthOdS ...ttt e s ae e e saas s s aesnsesnnans 32

d. Message PasSing.........ccceveeerinecrinierienereenenienecssessessesseenessessasssasaens 33

€. Control StHUCLUTEScveeeeeeneirirrrenienieerieeteereeieecraeseeeeeesneseensanes 35

2. Prograph Database Engine...........ccccccovvvennininnnininncnnnenessenenenssnernnns 38

III. WHY AN R/OODBMS ...ttt est s s e ssesnassesnns 41
A. DEFICIENCIES IN CURRENT DATABASE SYSTEMS............cccueuu.... 41

1. Relational Databases.............cccuieteeeecieniennnerneeninnieseinseneeesessessesseneesaees 41

iv

a. Limited Number of Data Types.........cccccevereererncinnencrsnnncnsssncnenens 41

b. Loss Of ADSraCtONcocevuiivimreninensunncesenssessnsnsssssesssessssesesssnssnns 42

. Tuples Lack FUNCHON.........ccueevinrinrinteceecrcnieseenesncsssanssasessssnsones 43

d. Lack of INheritancecccvuveueeveeneesincncniinnscassnnccnnennesensussscssesens 4

2. Object-Oriented Databasesc..ccvuccreereeceerscesnenesssenserssssssssassssssasossses 45

a. Lack of Mathematical Foundationccccceeveereenveecsnennneennnecneens 45

b. Lack of Standardizationccceeeeeeeeereneeneecseneeresseseesssnsensanes 45

c¢. Lack of Support for Relational Operations...........ccceccereeeeecrerenncnncns 46

3. Relational/Object-Oriented Management System..........ccceoceeeeenecervenees 47

4. Desired Properties of Database Systemsc.ccoeveevemnirvnieereneenensennes 47

B. WHY A RELATIONAL/OBJECT-ORIENTED DATABASE................... 48
C. WHY THIS WAS THE APPROACH TAKENccccovieverreerreneecneeenes 49
IV. AN R/OODBMS IMPLEMENTED IN PROGRAPHcccceuuuun.e. 50
A. BASIC ASSUMPTIONSoooiiiitienretecreetetresseesseeseesssssessssssssssnenses 50
1. Applications Will Be Developed In Prographccceceevincnencvnnncenee. 50

2. Current DB PersiStent........ccc.ccoivieireriieriecineseestesssesssnesssesssassnsessenens 51

3. Relations Contain Records of the Same Class.......ccccoeeeneveeveccrecrceennene 52

4. User-defined Records Must Be Descendents of Class Record............... 52

S. Every Relation Contains At Least One Keycccccvevvveneenreennneenenncnnes 53

6. Every Relational Operation Returns A Temp Relation.......................... 53

B. DESIGN DECISIONS ...ttt cnressesseesssessesesssessesssesssssesnnes 54
C. THE STRUCTURE OF THE DATABASE ...ttt 55
D. REQUIRED CLASSES.........o o oreteeerieeeessasesnetesesssssestassessessasaeas 56
1. Database Class..........ccccoveverierieinirecreetenesseses e ste e stestasssesssssesasssassennas 57

2. Relation Classcceceeerieeeriinirieieceiece e cessessessessassesesssssssssessssssenses 58

3. Temp Relation Class..........coeeceiiniiiieniieeeireseeeesteeeeenvesseesanssseseeesssssens 61

4. RECOTA ClASScnereeereeiicecciecte e ste et e ste e seesve s sb e sbsssae st esessnesnanns 62

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE

RESEARCH

B. CONCLUSIONS.......ccoovirtrenensessscsasnennesestsnssessessssnssnsssssssssssssassssssssssansans 64

C. SUGGESTIONS FOR FUTURE RESEARCHcccovventnetrccerenncnninnas 65

1. Implement Relational Operations in a OODBMSccoerninucrcnnn. 65

2. Optimization of Relational Operations............cccoveeveerecrnrsrecreseeseesesseeses 65

3. Allow Complex Objects to be Keysccoeevinvinciecreecnnnceereseersecrcenns 66

4. Addition of Other Types Of Databases To OODBMSs..............ccccue... 66

5. Standardized Class Library For All OODBMSs..........cccccvveeuererreneenennns 66
APPENDIX A - CREATING A SAMPLE DATABASE APPLICATION ... 67
APPENDIX B - ATTRIBUTES AND METHODScoceevvveereneeneercnenen 80
APPENDIX C - SOURCE CODEocoreerrereenieseneenenisessesseessessensessssens 84
LIST OF REFERENCESo o rresenrcesnssisensesnsseesessesassssssssesses 163
BIBLIOGRAPHY ...ttt sressessesessessee e sesnssnsenseens 166
INITIAL DISTRIBUTION LISTcooiiirneneeinentercissesneseseseesessssnenns 167

LIST OF FIGURES

Figure 2.1 Example Class Definitioncoiuiiiiiineneiiinniineniincniciccneeneeeecneennns 6
Figure 2.2 Superclass/Subclass EXampleooueevievenirirennnneeecenceeeseensecceesscenennes 9
Figure 2.3 Multiple Inheritance Problemc.ccocourvervuineceneniceneneeneesennnenne. 10
Figure 2.4 Employee Example..........ccccovmninimniniccninnieeninnnneenniesessecsseessesssssseses 11
Figure 2.5 Hourly and Salaried Attributes and Methods...............ccceueeeenennenneee. 12
Figure 2.6 Simple Relational Databasec.coocevveevirvieesnnenrnnenseecreeseeniesiee e 19
Figure 2.7 Two Union Compatible Relations...........cccccocvveervervennnecnciencnceenenenen. 20
Figure 2.8 Result of Employee Union SUpPErvisors.........c.eevevvuereecenieesinecreseenn. 21
Figure 2.9 Result of Employee - SUpervisor...........cccvccivecvenenienenrennssssesnessesannes 21
Figure 2.10 Result of Cartesian Product of Employee with Department.............. 22
Figure 2.11 Result of get-file Primitiveccoeceveereeenceeneeeceenenreesneensesssessensne 28
Figure 2.12 Barnyard Simulator Classes Windowccccceevcveeceecevrvereeeevennenne. 30
Figure 2.13 Sample Attribute WIndowsccccceevieinereneneirienienieneeevesnennevenns 31
Figure 2.14 Class methods Windowccceveeveeiiieninrceneeneneenennensessessessesssenenns 32
Figure 2.15 Case Window for Animal/eat..........cc.cccccenrevvrruesenenvenenssenrenneeesnavenen. 33
Figure 2.16 Method Referencescccvvecviveevecninieninin st snesenne 34
Figure 2.17 Control Structure Examplecccccovvievinenenenensenincniesesvesseesennns 36
Figure 2.18 Example C Code........c.couoirieieiieriiieieeintese e seesesssaesasssessessesanens 37
Figure 2.19 Synchro Link Examplecccccoeieverinincnnnenienennceneneecseseesnesnenas 37

vii

ACKNOWLEDGEMENTS

This thesis was made possible through the efforts of many people. Only a few
will be specifically mentioned here, but if you were involved in my research and
your name isn’t here, thank you.

First and foremost, thanks to my advisors Dr. Nelson and Dr. Wu. Had it not
been for their challanging questions and patient guidance this research would have
never been finished.

Special thanks goes to Lynn McKaig of TGSSystems. Without her prompt
response to my incredibly obvious questions, I'd still be looking for solutions. Also
her willingness to send me sample classes to clarify difficult points was most
invaluable.

A warm thank you goes to my many friends at Apple Computer, Inc. Especially
Carmela Zamora and Craig Elliot. Thanks for getting me E.T.O. I regret that it didn’t
get used in this research.

And for the most important people in my life, my family, without whom I
certainly would not be where I am today. Thanks for all the encouragement, love,
and support, especially from my wife Delilah. I only wish that I had been able to
spend more time with you. And finally a special thank you to my daughters,

Courtney and Gabrielle for making me smile even when my mind was pre-occupied.

viii

L. INTRODUCTION

The purpose of this thesis is to expand upon the concepts of relational/object-
oriented database systems. Much research is being conducted in the area of database
technology. Most research, however, centers around query optimization, distributed
databases, multimedia databases, and expert systems [EN89). Some research is
being conducted in the area of object-oriented (OO) databases; however, most of
this research appears to be directed towards designing OO databases for specific
types of applications such as computer aided software engineering (CASE) and
computer aided design (CAD) tools.

There has been some research done in the area of combining relational database
technology with object-oriented databases, and, two separate models have been
proposed. The first approach states that to achieve a relational/object-oriented
database management system (R/OODBMS), the object-orientation should be built
on top of an existing relational database [PBRV90]. Specifically, an object-oriented
interface is created to mask the underlying relational database. This interface
appears to perform queries, updates, etc. on objects, but it actually performs the
operations on the data that is stored in the relational database management system
(R/DBMS) to manipulate the data. The other school of thought is to add relational
operations to an object-oriented database [Nels88, NMO90]. This means that an
object-oriented database is responsible for the storage and retrieval cf objects.
Relational operations (i.e., relational queries) are performed by methods associated
with objects of the type Relation. The relational operations are built into the object-
oriented database by adding a class Relation to it. This thesis follows the latter

approach.

The main reason that most people choose OO databases is because they are
storing and manipulating data that cannot ordinarily be handled by conventional
databases. Good examples of these are CAD projects and CASE tools. These types
of applications generally require the ability to store and manipulate graphical objects
as opposed to textual objects. In contrast, relational databases serve a very useful
purpose in most business applications where the bulk of data being stored and
manipulated is simply textual or numeric data that can be stored and manipulated by
normal conventional means. The idea behind this thesis is to join the two different
types of database paradigms into a single fully functioning database model and to
consider alternative ways of implementing relational operations in an object-
oriented database.

This relational/object-oriented database can be shown to be a complete

relational system because it provides the five core relational operations upon which
all other operations can be constructed’. The five basic relational operations are built
into the database management system (DBMS) instead of creating an artificial layer
above the DBMS for them. This allows the user to create a database that is capable

of storing and retrieving objects as well as performing SQL-like? queries on the

database.
The database is designed in Prograph® [TGS88a, TGS88b, TGS91], an object-

oriented programming language (OOPL) available on the Apple Macintosh?. This
language was chosen because it contains primitive operations for all database

functions (i.e., disk reads and writes, opening keys, tables, etc.), so there is no need

1. This will be discussed further in Chapter III.

2. SQL stands for Structured Query Language and was designed and implemented by IBM Research
as an interface for a relational database system [EN89]. It has become the defacto standard for the
relational database industry.

3. Prograph is a trademark of The Gunakara Sun Systems, Lid.
4. Apple and Macintosh are registered trademarks of Apple Computers, Inc.

ee————S——

to create them. The database system created as part of this thesis is a functional,
albeit minimal, R”OODBMS. The number of ‘extra’ features was minimized for
clarity. Prograph also handles list processing and manipulation of non-conventional
objects (i.e., pictures, sounds, etc.) very easily which is important to the project’s
design.

The remainder of this thesis is organized as follows. Chapter II is a survey of
the literature that forms the background for this research. It sets the stage for future
discussion in this thesis, and provides an overview of the main topics of this thesis:
object-oriented programming, databases, and Prograph. Chapter III presents a
detailed description of the problem addressed in this thesis, the implementation of
relational operations in an object-oriented database. There is also some discussion
on how this idea has been implemented by others, and problems associated with
these implementations. Chapter IV describes the findings of this research. Chapter
V provides a summary, conclusions, and suggestions for future research. Appendix
A is a description of how to use the tools provided to create a database application.
Appendix B is the graphical representation of the attributes and methods for each

class and Appendix C is the source code for the implementation of this system.

II. SURVEY OF THE LITERATURE

This chapter deals with three major topics: object-oriented programming
(OOP), database management systems, and the object-oriented programing
language Prograph. Basic terminology and concepts are discussed in this chapter.
No assumptions are made about the readers level of knowledge in these three areas.
However, some familiarity with OOP and database topics may be helpful in fully
understanding the material. This chapter is intended to serve as an introduction to

these three topics, laying the groundwork for the rest of this thesis.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a relatively new area of programming whose
origin has been attributed to the programming languages Simula and Smalltalk
[Booc91,Mica88, SB86]. Although OOP seems to be the hottest sales item in pro-
gramming and program design today, there are very few standards that clearly define
it. Most agree that for a language to be considered object-oriented it must support at
a minimum objects, classes, and inheritance [Nels90a].

Creating complex applications using an object-oriented programming language
(OOPL) is usually simpler than designing the same program using a more conven-
tional procedural language. This is because OO design more closely mirrors the real
world entities being modeled. Also, the use of encapsulation (data hiding) and inher-
itance make classes more reusable. As an example, a program written in C in a win-
dowing environment that prints a “Hello World” window takes approximately 42
lines of code. The same program written in Actor (an object-oriented programming
environment) takes just two lines of code. This is because there is a Window class
declared in the class hierarchy of Actor and the programmer only has to create an

instance of this class to make the window. [Wu90]

The development of OO programs is dependent upon the careful design of the
classes and their relationships to one another. If the classes accurately reflect the sys-
tem being designed and if the external interfaces are designed properly, creating a
working program is fairly simple. This is the reason that the design of a program is
very closely tied to the actual implementation. In Ada, for example, the actual struc-
ture of the program may not reflect the structure of the system due to language con-
straints [Mica88]. Ada has no mechanism to support inheritance, so the design of a
class would most likely include some variables and procedures that have already
been defined elsewhere. Ada does takes advantage of libraries of different types of
functions such as math libraries, etc.; however, the programmer can only use the
functions provided in the library ‘as is’. If there is some functionality provided by a
certain library function, but it does not work exactly the way the programmer wants,
or if he would like to add functionality to the existing function, then the programmer
must make a copy of the function to be used in his program. This is because there is
no way to use an Ada library function as a foundation to be built upon.

The following sections present a more detailed introduction to some of the spe-
cific areas of object-oriented programming. The main areas to be discussed are

classes and objects, inheritance, encapsulation, reusability, and polymorphism.

1. Classes and Objects

A class is defined as “a set of objects that share a common structure and a
common behavior” [Booc91; page 93]. An object is a set of self-contained variables
with a set of procedures which operate on them [Nels90a). They do not exist in the
text of the program, but rather in the memory of the computer while the program is
being executed [Meye88]. Another way to view a class is as a framework or a
blueprint that describes all instances. It is also helpful to visualize a class as a static

entity, and an object as a dynamic entity [Meye88]. That is, once a class is defined

it does not change. In contrast, objects are constantly being created, modified, and
deleted during the program’s execution. For example, if the structure of an object is
defined as having attributes labeled X, Y, and Z, then the values stored in X, Y, and
Z can change many times during the life of the object.

It is helpful to think of a class as the general description of an object. For
example, one could declare a class called Person which describes all the common
features of people in general. A specific Person, such as John Smith, is an object
(instance) of this class. The class description serves as an abstract description of
related objects and how they interact with each other and the outside world. All
objects of class Person share the same structure (attributes) and behavior (things
they can do). It is this basic structure and behavior declaration that makes up the
class definition. The value of a certain attribute of a Person may be different for
every instance, but all instances have the same type of attributes.

The description of a class is broken down into attributes and methods

(behaviors). Continuing with the Person example, some attributes of this class

might be weight, color_hair, birthday, etc. (see Figure 2.11). Attributes of a class can
be further broken down into two distinct groups: class attributes and instance

attributes.

Class: Person

Superclass: none

Class attributes: total_population

Instance attributes: weight, color_hair, birthday
Methods: be_born, do_work

Figure 2.1 Example Class Definition

1. This figure is based upon the language independent class definition as presented in {Nels90a).

Class attributes not only share their names with all the instances of the
class, but the value of the class attribute is also shared by all instances [Nels90a).
For example, in class Person, there might be a class attribute fotal_population. As
each new Person is created, total_population would be incremented, and as an
instance is destroyed (dies) total_population would be decremented. However, the
value is the same for all instances of the class. In other words, if one instance of
Person, say John Doe, requires the total_population for some computation, the
value is locally accessible to him and any modification to the value will be
immediately visible to all other instances of the class.

Instance attributes share only their names with other instances of the class;
the values stored in the instance attributes can (and usually do) differ from one
instance to another. The attributes weight, color_hair, and birthday in Figure 2.1 are
examples of instance attributes. While each instance has this set of attributes, the
values stored vary from one instance to the next.

Methods describe actions for classes. They are accessed by passing
messages to an object. The concept of message passing comes from Smalltalk
where the means for causing an object to perform some function (method) is through
message passing [Booc91, Nels90a]. Methods defined for the class Person in Figure
2.1 include be_born (make a new instance of the class) and do_work. In some
languages the only way to access an object’s attributes is through the object’s
methods. This allows the creator of a class to modify its internal structure without
the outside users of the class being aware of the change. This idea is called
encapsulation, and is discussed in Section 3.

The external interface of an object is the way the object appears to the

users of the class. In C++ terminology, the external interface of an object is the set

of public2 attributes and public methods, as well as the specifications for these
methods. The external interface of an object also describes the methods available for
the object and how the messages for the object should be appear. Protected methods
are available to a class and its descendants, and although they are not part of the end-
user’s view of a class, they are visible to descendants of a class and the end-user
must be aware of these methods and attributes.

One particularly interesting type of object is the composite object
(sometimes referred to as an aggregate object). A composite object is an object that
is made up of other objects. In other words some (or all) of the attributes of an object
are themselves objects. These objects that make up the composite object can be
either sub-objects, or dependent objects, the distinction being dependent objects are
actually objects, and sub-objects are pointers to objects. [Nels90a]

2. Inheritance

Inheritance is what separates OOPLs from procedural languages such as
Ada or Pascal [Mica88). Inheritance can be defined as a mechanism that allows for
code sharing. It allows new classes to be defined based on an existing class or classes
[Nels90a, SB86]. The existing class is referred to as the superclass, while the new
class is referred to as a subclass of the existing class. In Figure 2.2, cléss A is the
superclass of class B, and class B is a subclass of class A. Class B inherits all of the
attributes and methods of class A (including any inherited by A); it may also define
new attributes and methods to augment the inherited ones.

There are two types of inheritance, single inheritance and multiple

inheritance. Single inheritance means that a class can have ‘at most’ one superclass

2. Public methods/attributes are those methods/attributes that are available to all methods and users
of the class.

Class A | Auributes: a
Methods: X

Class B | Auributes: b
Methods: Z

Figure 2.2 Superclass/Subclass Example

and is generally referred to as simply ‘inheritance’. Multiple inheritance (MI)
means that a class can have many superclasses.

With inheritance, unfortunately, comes several potential problems. The
biggest problem is that of naming conflicts, which is when a class defines a method
or attribute using the same name as an inherited one, either by choice, or by accident
[Nels88]. Generally if this happens the inherited method/attribute is inaccessible in
the new class. The problem becomes much more severe in languages that support
multiple inheritance. For example, if there is a method X in class A and a method X
in class B, and class C inherits from both A and B (see Figure 2.3), what happens to
method X is very much language dependent [Mica88, Nels90a,NMO91]. A similar
situation exists with the attribute q.

One possible solution is to have the compiler check for name conflicts and
flag them as errors, as in the language Eiffel [Meye88]. Eiffel does not permit a class
to inherit a method with the same name from two or more parent classes. Any name
conflicts must be resolved through the use of the redefine or rename commands
when declaring the subclass [Meye88]. However, this requires the programmer to
have some knowledge of the inner workings of the classes in the inheritance
hierarchy, which violates the concept of encapsulation. An alternative notion to this

is the super construct in languages such as Extended Smalltalk or CommonObjects

Class: A | Attributes: q Clam: B | Adtributes: r, q
Methods: X, Y Methods: X

.

Class: C| Attributes: r &?
Methods: Y, &?

Figure 2.3 Multiple Inheritance Problem

[Mica88]. This allows programmers to formally declare which superclass to inherit
a method from [Mica88)].

A different approach is to create a precedence list to determine which class
to inherit from. A precedence list is a list that is established, either by the language
or by the programmer to determine which classes are ‘senior’ to other classes. This
precedence list can be generated in a number of ways. One way is through a depth-
first traversal of the inheritance subgraph starting with the class in question. This is
the approach taken in the languages Flavors and Loops. Another way to create the
precedence graph is by using a programmer-defined precedence algorithm that
resides in the metaclass of the class being defined. This is the approach taken in
languages such as CommonLoops. [Mica88]

Inheritance allows the programmer to define objects as they relate to other
objects in their world view. Consider the example of an employee database. One of
the classes that needs to be defined is Employee. This class could have attributes for
name, age, sex, birthday, and address (see Figure 2.4). If the company has salaried
and hourly employees, you could create separate classes for these. Salaried would

have the attributes salary, years_of_service, job_title. Hourly would have the

10

attributes hourly_wage, position. Since both Hourly and Salaried are kinds of
Employees, they both inherit from the class Employee.

Employee |Attributes: name, age,
sex, birthday, address

Methods:
add_new_employee

Hourly [Attributes: hourly_wage, Salaried |Attributes: salary,
position years_of_service,
Methods: job_title
Methods:

Figure 2.4 Employee Example

Objects of type Hourly, for example, would have the inherited attributes
name, age, sex, birthday, and address, along with the locally defined hourly_wage
and position attributes. Objects of type Salaried would have the same inherited
attributes as Hourly, along with the locally defined attributes salary,
years_of_service, and job_title. Thus, the subclasses of Employee have access to
the attributes defined in the superclass as well as those in their own local definition
(see Figure 2.5).

Along with attributes, methods are also inherited by subclasses. An
example might be add_new_employee, which could be defined in the class
Employee. If the programmer wants to create a method for making a new hourly
employee, he writes the method add_hourly_employee in the class Hourly. This
method could first call add_new_employee which would return an instance of class

Employee, then it would add the specific values for an hourly employee. The call to

11

S

Class Hourly Class Salaried

Attributes (inherited): name, Attributes (inherited): name,
age, sex, birthday, address age, sex, birthday, address

Attributes (local): hourly_wage, Attributes (local): salary,
position years_of_service, job_title

Methods (inberited): Methods (inherited):
add_new_employee add_new_employee

Methods (local): none Methods (local): none

Figure 2.5 Hourly and Salaried Attributes and Methods

add_new_employee would look inside the class Hourly for a method called
adu_new_employee, since it does not exist there it would look to the superclass for
a method with that name. Since it is there it would execute; if not found there, then
the entire inheritance hierarchy would be searched until the method is found or the

top level of the class hierarchy is reached, which would result in an error condition.

3. Encapsulation

Encapsulation can be defined as “the process of hiding all of the details of
an object that do not contribute to its essential characteristics” [Booc91; page 46]. It
is also referred to as data hiding. In OOP, the user of a class should only need to
know how to call a method and what methods are available to manipulate an object.
The user does not need to know the internal details about how a specific method
works, or what attributes the object has. All the user needs to be aware of is what
message is passed to an object, and what will be returned by the object.

Encapsulation is an important concept related to object-oriented
programming and modularity of code. If the details of objects are hidden (i.e., they
are encapsulated), then program developers can specify what they want and how it

should interface; objects can then be built to specification without requiring

12

information about the exact structure of the object or how its methods are
implemented. It also allows for the code to be improved/modified without affecting
how end users access the object.

One language that supports the idea of encapsulation is C++. The way to
fully encapsulate attributes or methods in C++ is by declaring them as private,
which means that they are only visible to methods of that class. Thus the
implementation details are known only to the class that declared them. The external
interface of the class could then be declared as public (visible to everyone).
Additionally, C++ offers another alternative: declaring attributes/methods as
protected, which means that they are visible only to the class and its descendants.
By limiting the visibility of methods and attributes, encapsulation can be preserved.
Most OOPLs provide some means of encapsulation; however, in many cases it is up

to the programmer whether or not to utilize encapsulation.

4. Reusability

Reusability refers to “the ability of a system to be reused, in whole or in
part, for the construction of new systems” [Mica88, page 13]. This is a very
important issue in OOP, as one of the goals of OOP is to reduce the costs associated
with software development and maintenance. If programmers develop commonly
used structures such as hash tables, sorting algorithms, etc., and then test them
thoroughly to prove their correctness, why should they be re-written each time they
are required [Mica88]? This should not be necessary if the code exists and can be
reused without modification’. If the code cannot be reused as is, then perhaps it can

be used as a superclass, and the subclass that inherits from it can make modifications

or additions to the methods/attributes that are inherited.

3. The idea of retesting methods is also addressed in [PK90]. It is pointed out that even though a
method may be thoroughly tested in its original context, retesting is required to meet the standards
of adequate testing in the new context in which it appears. '

13

Inheritance then becomes a key factor in determining how reusable a
system is, because without inheritance the designers of software must either modify
an existing class to do what is desired, or copy it and then modify the copy. Both of
these alternatives are, however, unacceptable. The problem with modifying the
original is the loss of abstraction. The original class may become unrecognizable as
each programmer makes his changes. It may also become unusable to some clients
because the details that were modified were ones that they relied upon. The problem
with making a copy of the original class and then modifying it is the same type of
problem associated with maintaining multiple copies of data. Each time the original
class needs to be updated for bug fixes or enhancements, all copies of the class also
need to be updated. Inheritance allows the original implementation of the class to
stand as is, and clients can then use it or inherit from it and modify attributes or
methods as required.

Of course, with every benefit there are also drawbacks or side-effects
associated with it. The side-effect associated with inheritance as it relates to
reusability, is that if a class is properly encapsulated, then the subclass cannot
modify the existing attributes or methods without violating that encapsulation. If, on
the other hand, the subclass is created to simply take advantage of all (or some)
features of the superclass and add some new functionality, then there is no problem

with encapsulation.

5. Polymorphism

The ability to have more than one class with methods of the same name but
with different implementations is known as polymorphism [Nels90a).
“Polymorphism is an important feature of all object-oriented programming
languages that allows the definition of flexible software elements amenable to

extension and reuse” [Mica88, page 31]. Examples of polymorphism (also called

14

operator overloading) that are common in most conventional languages are the
arithmetic operators +,-,*, and /. If you declare two integers and two real numbers,
and then perform addition on each pair, you have used the symbol ‘+’ to perform
two different functions; one is integer addition and the other is floating point
addition.

Simple polymorphism refers to the ability of different classes to implement
the same operation, differently. Multiple polymorphism is when a single class can
have multiple operations with the same name, but possibly a different parameter list.
When a message is sent to a class with multiple methods with the same name, the
method used is determined by the parameters passed in the message. [Nels90a]

Polymorphism allows programmers to add multiple methods to classes that
share some commonality and therefore use the same name to denote the specific
function. This is preferred over creating an artificial name to distinguish two or more
methods that are essentially the same with the exception of their parameters, or the
receivers of the message. An excellent example is a print method for a screen object
and a printer object. If the receiver of the print message is a screen object the
information will be displayed upon the screen, if it is a printer object the information
to be printed will be sent to the printer. There is no distinction between the messages
to perform a screen print and printer print, however the result of the method is very

different.

B. DATABASE MANAGEMENT SYSTEMS

Of the three major topics covered in this chapter, databases and database tech-
nology is the oldest. It is also a major part of the foundation upon which this thesis
is built. This section serves as an overview of database topics and the distinctions
between the different types of database technology available in the marketplace to-

day. Itis not intended to be a tutorial for novices to learn database systems. The read-

15

er may refer to “Fundamentals of Database Systems” by Ramez Elmasri and Sham-
kant B. Navathe [ER89] for a more detailed introduction to this subject.

1. Basic Terminology
A database is a logical collection of related data that has some intrinsic

meaning [EN89]. It can also be defined as data that is permancmtly4 stored in a
computer [Nels90b]. These definitions lead to the conclusion that a random
collection of data is not a database, which is an accurate assessment. A database is
also said to represent a subset of the real world, sometimes called a miniworld
[EN89].

The tool used to build, store, and manipulate the data stored in a database
is the database management system (DBMS). A DBMS can be thought of as a
general-purpose software system [EN89] to perform the previously mentioned

tasks. Each type of DBMS (hierarchical, network, relational, and object-oriented)5
has its own particular way to define the data being stored; this is sometimes referred
to as its data-definition language (DDL). The way a DBMS stores and retrieves data
from the storage medium (disks, tapes, etc.) is through its storage definition
language and the way a database user sees the data presented is controlled by the
view definition language. Some DBMSs have these languages separated into
distinct languages while others have a single all-purpose database programming
language.

Another important concept in database technology is the data model. A data
model is a way to abstract the data being stored in a database to provide a clearer

visualization of the data than computer storage concepts provide. That is, data

4. That is, the data will exist after normal termination of the program. The data is “permanent” until
the user issues a delete command to remove the data from the database.

5. Only relational and object-oriented approaches are discussed in detail in this thesis.

16

models represent the data being stored in a form that is more meaningful to the user
than the actual form the data takes on the storage medium. For example, consider a
data model that represents the data in a tabular form. This would be clearer to most
people than a B-Tree data structure that might actually hold the data.

Many different types of data models exist to represent the different types of
databases. One model that crosses the boundaries of different database types is the
entity-relationship (ER) model [EN89]. This model can be used to design a
relational database as easily as a hierarchical, network, or object-oriented database.
The basic elements of the ER model are entities, attributes, and the relationships
between entities. An entity is defined as a “thing” in the real world, either tangible
(e.g., an employee) or intangible (e.g., a project) and each entity has attributes that
describe it. For example, an employee object might have attributes representing
name, dept, social security number, etc. A relationship between two entities means
that they are linked by some attribute in each entity. Relationships can represent one-
to-one, one-to-many, Or many-to-many associations between relations. An example
is a company database that maintains employee entities and project entities. A
typical relationship might be a ‘works-on’ relationship where employees work-on a
project. An attribute of an employee entity might be project number and an
attribute of project might be number. The works-on relationship would consist of
tuples representing every employee/project pair. Quite often the relationship is
stored in the database as a table as well because they have attributes associated with
instances of the relationship, or because the relationship is one-to-many, or many-

to-many.

2. Relational Databases
The relational data model was introduced in 1970 by Dr. E. F. Codd

[Codd70]. Since its introduction there has been s great deal of interest in, and

17

development of, relational database systems. This can be attributed to the ease of use
associated with it as well as its firm mathematical foundation. It is also a more
abstract way to present a database than hierarchical or network databases, which are
closely tied to the physical data structures.

A relational database is, as the name implies, a collection of relations.
Relations can be thought of quite simply as tables containing entries for each entity
being stored [Alag86]. These tables consist of many instances (or rows) of tuples,
and a tuple (often called a record) is a collection of related data that describes one
entity of an ER diagram, or one object being stored. The columns of a relation
represent the attributes associated with an entity in the ER diagram.

The key to understanding relational databases lies in understanding set

theory from mathematics. The concept of storing data in tables is fairly easy for the

average individual to comprehend. Figure 2.6% is an example of a very simple
relational database displayed in tabular form. One would have to agree that there is
little difficulty in determining what is being stored in this database. However,
understanding how to obtain specific records or values from the database requires
that the user understand the relational algebra associated with performing queries. A
query, as the name implies, is how a database is interrogated or probed for
information. Queries are performed to retrieve specific information from the
database. For example, to obtain a list of employee names whose SupSSN is equal
to 222333444 requires two select operations and a project operation. These
relational operations, plus union, set difference, and Cartesian product, are the

subject of the following section.

6. The name of the primary key is underlined.

18

Employee

Name SSN Dept
Smith 123456789 Sales
Borg 222333444 Mktg
Jones 256789043 Sales

Williams 456782910 Sales
Edwards 598320982 Mktg

Department
dept-name | Location SupSSN
Mktg New York 222333444
Sales Los Angeles | 256789043

Figure 2.6 Simple Relational Database

a. Relational Algebra

One of the most commonly used relational operations is the select
operation. This operation is used to retrieve entire tuples from a relation. The select
operation gets the tuples based on a selection condition. The selection condition is
a boolean expression made up of one or more expressions of the following form:

<attribute name> <comparison operator> <constant value>; or

<attribute name> <comparison operator> <attribute name>
where <attribute name> represents an attribute name in the relation being operated
on, <comparison operator> is one of the operations in the set (<, >, =, <, 2, #), and
<constant value> represents a constant value. There can be any number of these
clauses joined by the Boolean operators AND, OR, or NOT. [EN89]

The project operation is similar to the select operation except that
where the select operation retrieves specific rows from a relation, the project

operation retrieves entire columns from a relation. Also, instead of a selection

19

condition to determine which tuples to chose, the project operation simply lists the

attribute names or the columns to be retrieved. [EN89]
The next three relational operations can be classified as Set Theoretic

Operations. That is, they are operations that are performed on entire sets (relations).
The basis and proof of correctness of these operations is directly related to
mathematical set theory proofs and concepts. [EN89]

The union operation creates, from two union compatible relations, a
new relation that contains every tuple from both of the original relations with
duplicate tuples removed, just like the union of two sets in mathematics. Union
compatible means that both relations have the same number of attributes and the
attributes are of the same domain (e.g., the attribute pairs are both from the set of 9
digit integers). Figure 2.7 shows two union compatible relations, the Employee and

Supervisor relations, and Figure 2.8 is an example of the union of those relations.

Employee Supervisor
EName ESSN SName SSSN
Smith 123456789 Borg 222333444
Borg 222333444 Stone 567811543
Jones 256789043
Williams | 456782910
Edwards | 598320982

Figure 2.7 Two Union Compatible Relations

The set difference operation is defined as the relation containing all the
tuples in the first relation but not in the second, as in Figure 2.9. It is denoted by a

minus sign (“-”) such as Employee - Supervisor.

20

EName ESSN
Smith 123456789
Borg 222333444
Jones 256789043
Williams 456782910
Stone 567811543
Edwards 598320982

Figure 2.8 Result of Employee Union Supervisors

EName ESSN
Smith 123456789
Jones 256789043

Williams | 456782910
Edwards | 598320982

Figure 2.9 Result of Employee - Supervisor

The Cartesian product operation combines tuples from each relation in
such a way that each tuple of the first relation has each instance of a tuple from the
second relation appended to it. The resulting relation has as many attributes
(columns) as both relations combined and the number of tuples is equal to the
number of tuples in the first relation multiplied by the number of tuples in the second
relation. The Cartesian product of the relations Employee and Department is shown
in Figure 2.10.

As can be seen in Figure 2.10, there is quite a bit of redundancy in the
resulting tuples as each tuple in the first relation is repeated once for each tuple in

the second relation and vice versa. Therefore, the result of a Cartesian product is

21

Name SSN Dept | dept-name | Location SupSSN
Smith 123456789 | Sales Mktg New York 222333444
Smith 123456789 | Sales Sales Los Angeles | 256789043
Borg 222333444 | Mktg Mktg New York 222333444
Borg 222333444 | Mktg Sales Los Angeles | 256789043
Jones 256789043 | Sales Mktg New York 222333444
Jones 256789043 | Sales Sales Los Angeles | 256789043
Williams | 456782910 | Sales Mktg New York 222333444
Williams | 456782910 | Sales Sales Los Angeles | 256789043
Edwards | 598320982 | Mktg Mkig New York 222333444
Edwards | 598320982 | Mktg Sales Los Angeles | 256789043

Figure 2.10 Result of Cartesian Product of Employee with Department

usually used only for a specific purpose and then discarded due to this excessive
redundancy.

The five relational operations just covered have been demonstrated to
be a complete set of relational algebra operations [EN89]. That is, it has been shown
that any other relational operation can be constructed from some combination of

these five basic operations. Thus any relational database system can be considered

complete if these five operations are included’.

b. Limitations of Relational Databases
Probably the most obvious and important limitation of conventional
databases (i.e., relational as well as hierarchical and network) is the lack of support
for large unstructured data such as sounds or pictures. As Kim points out in [Kim91],

conventional databases have served us well in the application domain they were

7. Of course, efficiency of operations is another issue. For instance, it may be much more efficient
to implement other operations, such as intersection, directly rather than in terms of these five basic
operations. [Nels88]

22

originally developed for, namely business and payroll type applications. However,
many of today’s applications, including CASE tools and CAD programs, require a
more dynamic storage and retrieval system such as the object-oriented data model.

Additionally, relational databases tend to loose the structure of the data
being modeled as it is normalized. To efficiently model data in the relational model
it must be normalized, or flattened out to remove redundancies and dependencies.
In doing so the original structure of the data is often lost. This causes the data
abstraction to be lost and removes much of the original meaning of the entity being

stored.

3. Object-Oriented Databases

In recent years there have been quite a few object-oriented database
management systems (OODBMS) developed. This section briefly describes some
features common in most OODBMS as well as discussing various problems and
limitations associated with them. Two example OODBMSs to be discussed herein
are Gemstone [Serv89a, Serv89b] and Vbase [Onto88] (the predecessor of Ontos
[Ont090]).

What differentiates an OOPL from an OODBMS is persistence of objects.
An OODBMS allows the user to create and manipulate objects (as does an OOPL),
but it also provides for permanent storage of the object so it can be used again in

another session. Most OOPLs do not have the facilities to save objects from one

session to another®. Aside from this difference most OODBMSs are very similar to
OOPLs.
OODBMSs allow users to declare classes and create instances of these

classes just as OOPLs do. However, when the user requires an object that has been

8. It should be noted that Prograph is one of the few OOPLs that does support object persistence
without requiring a database file to hold the objects. This feature will not be used for the purposes
of this thesis, a separate database file will be created instead.

23

written to secondary storage, the OODBMS retrieves the object from the storage
medium and puts it into the correct form so that the user can manipulate it. An OOPL
can only retrieve objects stored in memory during a single session. The OODBMS
handles the reading and writing of the objects to and from the storage medium in a
way that is transparent to the user, just like conventional DBMSs. However,
OODBMS:s also maintain the methods associated with the class of the object being
stored so they retain their ability to function and perform operations. Conventional
databases store only data values and therefore they can only be used by a separate
program; objects stored in an OODBMS, on the other hand, are able to function
when they are retrieved from the database.

All OODBMSs surveyed have a database programming language
associated with them as well as a class library. There are as many languages as there
are systems. Some languages are variants of Smalltalk-80 (e.g., Opal, the Gemstone
data definition and manipulation language), others are variants of C or CLU (e.g.,
COP, the data manipulation language of Vbase). There are also many different class
libraries which contain class definitions for such classes as Collection, Set,
Dictionary, Association, and others. These classes provide a means to organize the
objects being stored in the database. Without these classes an OODBMS would not
be very usable, it would merely store all objects in one location without a logical
connection and, as discussed earlier, this defies the definition of a database.

When creating objects, the user will generally chose to store each object in
a collection of some kind based upon the type of data/database being modeled. If,
for example, the user wishes to model a relation, an instance (or descendant) of Set
might be created, because relations are defined as sets of related tuples. By storing
objects within a descendant of Collection the data can be thought of .as one logical
unit and manipulated as such. Depending upon the subclass of collection being used,

the data being stored can also inherit qualities that provide easier (or faster) access

4

to each object. For example, if a collection of objects is related in such a way that
the objects are all different and each has a key/value associated with it, an instance
of Dictionary might be created to hold the objects. [FN92a]

OODBMSs also provide many of the features expected in conventional
database systems, such as access control and concurrency control. They generally
provide methods for locking individual records/objects during updates, just like
conventional databases. Since the OODBMSs surveyed are designed to run on
multi-processing architectures, concurrency control is built into the database kernel
or monitor running on the host computer.

It has been said that relational databases are value-based whereas object-
oriented databases are identity-based [ZM90]. This is a result of the previously
discussed idea that object-oriented databases capture the function as well as the

value of each object.

4. Relational/Object-Oriented Databases

Although there has been relatively little work done in this area of database
research, it is probably one of the more important areas. This is because there exists
a very large base of relational database applications, and SQL-based languages have
become the defacto industry standard [Alag86]). While most agree that object-
oriented databases are the way of the future, many hours and dollars have been
invested in relational systems and people are generally unwilling to forsake
relational databases in favor of a new model. What the relational/object-oriented
model promises is a way to have all the benefits of the newer OO approach without

abandoning the “tried and true” relational approach.
It has already been established that a major failing of conventional
relational databases is the inability to represent complex data types. This is very

important if technology is to continue to move forward. A relational/object-oriented

25

database system would take the best of both types of database technology and
combine them into a single more powerful database tool.

It has been proposed that the capability to perform relational operations
could be added to any object-oriented system [Nels88, NMO90]. A prototype
system, called a relational object-oriented database management system (ROOMS),
provides an interface that could be used as a stand alone database system or added
to any existing OODBMS. The system is designed around a Relation class, a
Record class, and a Database class. The workhorse is the Relation class. It includes
of methods for each of the five basic relational algebra operations as well as methods
to display a relation and add/delete records from the relation. This approach will be

discussed in more detail in the next chapter.

C. PROGRAPH

Prograph [TGS88a, TGS88b, TGS91] is billed as a “Very high-level pictorial
object-oriented programming environment” for the Apple Macintosh. This means
that the level of abstraction from machine language is about as distant as one can get
(at this time, anyway). For example, programs written in assembly language are di-
rectly tied to a specific processor, and the actual instructions have a nearly one-to-
one mapping with the machine instructions for that specific processor..In contrast,
Prograph allows the programmer to design and implement programs as a number of
objects which interact with one another to produce desired results. This is common
to all OOPLs; however, Prograph allows the programmer’s mental image to be
transferred to the computer in an iconic fashion, thereby reducing loss in translation
to textual form. To aid the programmer in seeing the application in terms of classes,
methods, and attributes, Prograph makes use of both icons and the Macintosh oper-
ating system’s windowing environment. Programs are built as dataflow diagrams

representing the data that flows through the program. This is in contrast to traditional

programming languages which treat data as something stored away in memory
somewhere, and only handled as necessary.

Prograph is a hybrid OOP language. This is because Prograph supports primi-
tive language types such as character, integer, boolean, etc. A pure OOP language
has no primitive language types; everything is an object [Booc91, Mica88].
Prograph, like C++, has primitive data types as part of the language that are not in
the inheritance hierarchy. Another feature that makes Prograph a hybrid language is
the concept of universal methods. These are methods that do not belong to any par-
ticular class, but can be called from any method in any class [TGS88b]. Support for
universal methods frees the programmer from having to create specialized classes

somewhere in the inheritance hierarchy to perform one specific task.

1. The Language

Since Prograph is a dataflow language, data is active, not static. That is, data
moves through the program rather than sitting in a memory location waiting to be
processed as in the von Neumann model. In a dataflow language, as soon as data is
available to each input of an instruction, it can execute. This represents a key
difference between dataflow languages and sequential text-based languages, in that
the execution of a von Neumann machine is based on the process of fetching an
instruction, executing it, and then fetching the next instruction, and so on. This
provides a single thread of control from instruction to instruction. In contrast, the
dataflow machine’s instruction cycle detects when all required inputs are active (i.e.,
have data available), fetches the instruction, executes it, and generates the data to be
output by the instruction. Since there are many possible flows of control in a
Prograph program, it supports concurrent processing {TGS88a]. Obviously, since
the programs used in this thesis are intended to be run on a uniprocessor system (the

Apple Macintosh), true concurrency is not possible.

27

Some additional Prograph terminology is necessary to understand the
examples used herein: terminals, roots, and primitives. Terminals are the input to
methods and primitives, and roots are the outputs. Primitives are the procedures (or
functions) that are built into the language.

An example of a primitive is get-file. This primitive accepts as input (via its
single terminal) a list of file types to be displayed in a standard Macintosh open file
dialog box (see Figure 2.11). The outputs of this operation are: the name of the file
selected from the scrolling list, the volume identifier, and the file type. This is just
one example of the power of primitives. They encapsulate much of the detail
involved in creating certain displays, as well as performing such functions as

arithmetic, list processing, and so on.

< Prograph ¥ e Filippi HD

0 2.02 Release Notes.THT [Ejeet]
D AppBuilder :
0O Classes § | [Desktop)
& Compiler 2.02
O Compiler Prefs
D CopyPiuBits f§
O Examples 1 f
O Examples 2 §

(Cancel

Figure 2.11 Result of get-file primitive

Prograph is one of the few OOPLs that supports persistent objects.
Persistents are defined as data or objects that exists from one execution of a program

to another. They are created and displayed in a Persistents window that is separate

from the Classes window and the Universal window. Persistents are created in the
same way as a class or method, and can be double-clicked to display their values.
Persistents allow the user to manipulate objects and store them within the program
so that they can be used later during the execution of the program, or recalled during

another execution of the program.

a. Classes
Prograph classes are represented by hexagonal icons displayed in the

Classes window (see Figure 2.129). Within the window are the class hierarchies for
the program. There can be as many separate hierarchies as the application requires.
This is different from some other languages, such as Smalltalk, which allow only a
single class hierarchy. In Figure 2.12 there are three distinct hierarchies. Two of
them contain only one class each and the third has as its root the class Animal. The
lines between classes in the Animals hierarchy represent the inheritance links
between various classes.

The class icon itself represents the component parts of a class, its
attributes, and its methods. The left-half of the icon represents the attributes of the
class, the right-half represents the methods. Double-clicking on the left half opens
the attributes window for the particular class. Similarly, double-clicking the right
half opens the methods window for the class.

To create a new class the programmer points to white space in the
Classes window and clicks the mouse button. Once the icon appears the programmer
gives the class a name and defines its attributes and methods. If the name selected
by the programmer already exists, then the system will not accept it, warning the

user that the chosen name is already in use.

9. This figure as well as those that follow in this section, are taken from an example in Part II, Chap-
ter Six of the Prograph Tutorials [TGS88a).

29

@2 Classes
sraron 0
Bar‘ CLASSES :
o
DiaryEntry
B @& &
Chicken Duck Guernsey Black Angus
) 3

Figure 2.12 Barnyard Simulator Classes Window

b. Attributes

Attributes are displayed in the attributes window. Class attributes are
represented by the hexagon shaped icons, and instance attributes are represented by
inverted triangles. The attributes window is divided into two parts by a horizontal
line. Above the line are class attributes, below it are instance attributes. The attribute
windows for the classes Animal and Guernsey are shown in Figure 2.13. The class
Animal has no class attributes, only instance attributes which are defined locally.
We know this because the icons for the attributes do not contain a downward
pointing arrow. In contrast, the attribute window for Guernsey has one class
attribute, herdMembers which appears above the horizontal line, and instance

attributes name, age, and food, below the line. The three instance attributes are all

V Animal V Guernsey
atd (<<Guernsey... it
V herdMembers
name e
| v
V name
age 1
“generic cho... v
V age
food “ “
grass
| V4
food
&G [>5 S
&l >3

Figure 2.13 Sample Attribute Windows

inherited via the superclass Cow!?. This is shown by the downward arrow in each
instance attribute icon (inverted triangle icon). If there were any attributes particular
to only a Guernsey, they would appear below the inherited attributes in the window.
The class attribute is also inherited from Cow so it has the downward arrow in the
icon (the hexagonal icon).

Attributes can be assigned in..ial values by double-clicking on the icon
and changing the value in the attribute editor. Attributes can also be more than
simple data types, they can be instances of other classes; this is how you represent a

composite object in Prograph.

10. Any attributes inherited by Cow arc also passed on to its subclasses.

31

¢. Methods

Methods are represented by an icon that contains a mini-dataflow
diagram (see Figure 2.14). The hexagon shaped icon labeled <<>> is a special kind
of method called an initialization method or instance generator. This instance
generator method is invoked whenever an instance of that class is created. It allows
you to tailor creations of an instance. This method also overshadows the instance
primitive (overshadowing is the term used in Prograph for redefining inherited
attributes/methods).

. Animal

move talk eat sleep blrthdag ¢<>>

& =

]}

Figure 2.14 Class methods window

When a method is selected and opened (by double-clicking the icon), a
case window such as the one in Figure 2.15 is opened. This is where the dataflow
aspect of the Prograph language is most apparent. In this example, there are three
basic types of operators. The operators with the concave left side labeled food,
name, and what happened are Get operators. These retrieve the values of the
attributes that match their label. Operators with a convex left-side (such as the
bottom occurrence of what happened) are Set operators. These set the values of the
attributes that match their label. The other types of operators shown are primitives.
For instance, the two labeled join catenate two or more strings to produce a single

string. The long narrow bars at the top and bottom of the case window are the input

32

bar and the output bar. These are where the data flowing in and out of the method
are attached. In this example, there are two inputs (an instance of the class Animal,

and the current eventRecord) to the method, but no outputs.

Animal/eat 1:1

7777777777778
animal current
instance eventRecord

oot Forhat happencd)

B3

@vhat happened%
o

SIS SSSSS SIS ST S S SIS IS SIS S ST S s

< 5

B¢

Figure 2.15 Case Window for Animal/eat

d. Message Passing
Message passing in Prograph is accomplished by creating a simple
operation with the name of the method being called. Once the method has been
named and the Enter key (Return key) has been pressed, Prograph assigns the
operation the correct arity based upon the arity of the method called. Arity refers to

the correct number of terminals and roots for the operation. Figure 2.16 shows the

33

five ways to reference a method. They are, respectively: universal reference, explicit

reference, data-determined, context-determined reference, and super.

Gong Ceowinid WGlond
3 4 5

1 2

Figure 2.16 Method References

A universal reference is when the method being called resembles
Example 1 of Figure 2.16; that is, there is no slash (“/”) preceding the name of the
method. The method to be executed is located in the Universal methods window.
Universal methods are similar to global functions in other programming languages,
because they have a global scope. In an object-oriented language such as C++ these
types of functions could be stored in a Global dictionary so they could be used by
any method that needs them.

An explicit reference is always in the form ClassName/MethodName
(see Example 2 of Figure 2.16). If the method is not found in the specified class, its
ancestors are examined for the appropriate method name, but the search begins with
the class named before the slash. These types of methods are not directly related to
any object-oriented concept. They are provided mainly as a way of supporting
traditional programming concepts.

A data-determined reference is similar to the OO concept of message
passing and is denoted by a method name preceded by a slash (see Example 3 of
Figure 2.16). The method called is based upon the instance of the data arriving on

the left-most terminal of the operation. In other words, the class to search for the

named method is the same class as the instance arriving on the left-most terminal.
Data-determined references are examples of single polymorphism.

A context-determined reference is akin to the OO concept of sending
a message to one’s self and is denoted by the method name preceded by two slashes
(see Example 4 of Figure 2.16). The class to be examined for the named method is
the same class the calling operation exists in. For example, a class Cow might
contain a method new_cow that creates a new instance of the class Cow and names
the new instance by calling the method name in class Cow. The operation in
new_cow that names the new cow is labelled /name, this tells Prograph to look for
name within this particular class.

The fifth type of operation is called super. It is a context-determined
reference that searches for the appropriate method, not in the class it is called from,
but its superclass. A super operation is denoted by an up-arrow in the right side of
the operation icon (see Example 5 of Figure 2.16). The super operations allow a
method to use a parent’s method and then add its own functionality to the parent’s

method.

e. Control Structures

Even though Prograph is a dataflow language, flow control can be
imposed and is in fact often necessary to obtain desired results. The primary way to
affect the program flow is through the use of controls. Controls are attached to
certain operations and are activated based upon success or failure of the operation.
The default setting for all operations is to activate on success. This default is
changed by selecting the operation desired and selecting the appropriate control
from the Controls menu.

Controls are represented by a small square icon attached to the right

side of an operation. Within the square is a check mark (), indicating activate on

35

success, or an X, indicating activate on failure. There are also other icons within the
small square indicating what action to take if control is activated (e.g., go to next
case, continue, terminate, finish, or fail). Probably the most common control is the
‘on failure go to next case’. This allows the programmer to execute different
operations within a single method based upon success or failure of a test. This could
be used as an if-then-else structure or a case structure. An example of an if-then-else
structure is shown in Figure 2.17. The < operation has an ‘on success go to’ ")
control attached to it so if the age of the cow is <3, control goes to the next case (i.e.,
Cow/name 2:2) and “Lil’” is appended to the front of the cow’s name. If the age <3
operation fails, control remains in the current case and only the name of a cow is
output. The case windows are distinguishable by their title bars. Each has the same
method name, but they also have 1:2 or 2:2 to distinguish the first case window from

the second. A comparable C code fragment is shown in Figure 2.18.

s 2 Cow/name 1:2ERIGEIE=0E]

a Cow or its
subclass instance

Add Lil’ to
Cows less
than 3 yrs old.

Simply output
the name
if Cow is
over 3 yrs old.
ZIII I LTI I 1A IS I T I I I AT I I PAT 7Y, A

pass the
instance
along

SSSSILLSSSSSSSLSSSSLLLSSSSSSYY .

Figure 2.17 Control Structure Example

the second.

if (cow.age > 3) printf(“%c”,cow.name);
else printf(“Lil’%c”,cow.name);

Figure 2.18 Example C Code

Another form of flow control is the synchro link. It forces one operation
to be executed before the second can execute. This allows the programmer to ensure
that two things which could be executed in either order, will only be executed in the
desired sequence. In Figure 2.19, for example, there is a synchro link from show to

ask. This is to ensure that the show operation executes before the ask operation.

O new instance 1:1 ERGEEIN=E0E

LSS SLISSISSS LSS LSS LS LSS SSS S SIS S S
attribute /value list
Sorry, anima... What kind of...

>>>>> 3333323 ask

synchro //////:/%I/

to say sorry
before new
animal prompt
LIL IS IIS IS III IS II IS 11 ST TSIV,

bk thalt sy

Figure 2.19 Synchro Link Example

Synchro links are a useful tool in controlling the execution of certain operations.
However, they do not guarantee that the second method will follow immediately

after the first; rather, it only guarantees that the first operation will execute before

37

2. Prograph Database Engine

Before discussing the Prograph database engine, it is appropriate to first
define some new terms. The Database Engine is the set of primitives which perform
all of the functions normally associated with a database management system,
including all the functions necessary to create and maintain a disk-based database.
These primitives allow the programmer to manipulate databases, the tables stored in
the databases, and the clusters that make up the tables. The programmer can also
access the keys for a database table through primitives. Tables in Prograph databases
are composed of clusters which should logically be of the same type (i.e., all the
clusters should be an instance of a single class), but are not limited to this
convention. In its simplest form, a table represents data that the programmer has
grouped together. A Cluster represents the individual record being stored in the
database. The cluster is not restricted to any specific data types. “A cluster can
contain textual, numeric, and boolean (TRUE or FALSE) data, as well as Macintosh
structures (such as PICTs or ICONs) and Prograph objects (instances of classes)”
[TGS91, page 48]. A cluster is a way of taking an arbitrary collection of Prograph
objects and packing them into a single stream of bytes. The breaking up of objects
into clusters is transparent to the user; the user always sees the cluster as‘a collection
of data.The database engine allows the programmer the flexibility to model flat-file,
relational, object-oriented, and other databases as the programmer deems necessary.
[TGS 91]

A database can be accessed in one of three modes: query, update, or shared
mode; with the mode being determined when the database file is opened. Query
mode allows read-only access to a database by multiple users. Update mode is for

single-user reads and writes to a database. The share mode provides multiple users

38

both read and write access to the database.!! In the multiple user modes, all users
must open the database in the same mode (i.e., all users must be in either query
mode, or they must all be in share mode, but not a mixture of query and share).

Access to the data stored in the database can be through one of three access

methods: 12 direct cluster access, sequential key access, and random key access.
Direct cluster access means retrieving a cluster based upon its ID (each cluster has
a unique ID which corresponds to the byte offset of the cluster in the data file).
Sequential key access is the way clusters are retrieved based upon the ordering
imposed by the value of the key. For example, if the clusters were employee entries
and the key was last name, sequential key access would allow retrieval of employees
in alphabetical order. Random key access is how clusters are retrieved based upon
key/value matches. Suppose the employee record desired has the last name equal to
Smith; random key access allows the cluster corresponding to the key value equal to
Smith to be retrieved without having to visit all the intervening records first.

Prograph databases can contain multiple tables, and each table can contain
multiple clusters and multiple keys. In order to manipulate a cluster (record) in a
Prograph database, the programmer must first open the database file, then the tables,
and finally the keys (if applicable). This hierarchy must be adhered to or the
primitives associated with storing and retrieving clusters will fail and return an error
code that must be handled by the application.

All database primitives (i.e., database, table, key, and cluster primitives)
return as the left-most root an error code. If the error is a zero (0), the operation was
successful; if it is any other integer, then there was an error. This allows the program

to recover from errors by testing this output and branching as appropriate. It also

11. Multiple users refers to the ability to share a database across a network of Macintosh computers.
The database would reside on a File Server and the clients could access the data concurrently.

12. These are access methods in the classic database sense, not as in object-oriented methods.

39

allows the program to close all open database files in the event of an unrecoverable

error such as a “Disk Full” error.

III. WHY AN R/OODBMS

The previous chapters were presented to give the reader a basic understanding
of OOP, Prograph, relational databases, and object-oriented databases, and to act as
a common point of reference for ideas presented in this chapter and the next. This
chapter presents a discussion of some of the deficiencies associated in current
database systems. There is also a discussion of why a relational/object-oriented
approach is advocated and why this approach is taken. Finally, the reasons for

selecting Prograph as the language to implement these ideas are covered.

A. DEFICIENCIES IN CURRENT DATABASE SYSTEMS
This section covers the problems associated with building complex database
applications using existing database systems. The desired properties of each type of

system are also presented.

1. Relational Databases
Relational database technology and its limitations are the driving force
behind this thesis. Current implementations of the relational data model are very
limited in their ability to handle complex data types. That is not to say that the
relational model is no longer of value, as it still serves the purposes of many
applications quite well. As discussed in the previous chapter, however, the relational
databases that are currently available do not allow users to maintain the desired level

of abstraction and encapsulation of the data being stored and manipulated.

a. Limited Number of Data Types
The number of data types available is typically fixed in RDBMSs, and

is one area of concern for developers of new types of database applications.
Specifically, the lack of support for complex data types such as digitized pictures,

digitized sound, and composite objects. Some relational databases currently

41

available have the capability to store pictures in a database, but not sounds or
composite objects, and there is no way to perform a query based on a complex
object. In a CAD application, it is desirable not only to be able to store graphical
objects, but also to be able to perform queries based upon them. The ability to
display graphical objects based upon their properties is also very desirable.

All relational databases include support for simple data types (i.c.,
strings, numerical, boolean, etc.), and some even provide support for digitized
pictures. However, the real world we wish to model is much more complex than this.
The world we are attempting to model may include animated graphical objects,
sounds, and composite objects, just to name a few. There is currently no relational
database system that provides support for complex data types such as these.
However, it should be noted that some relational database systems do support free
form attributes, often called memos. These memo attributes are basically free form
text fields of arbitrary length, so they could be used as a pseudo-repeating field.
Also, as previously mentioned, some relational systems provide support for picture

objects, but they are limited in their functionality.

b. Loss of Abstraction

To correctly model data to be stored in a relational database, there must
be some form of decomposition of real world objects into flat objects. Occasionally,
certain contrived relations must be created to achieve a satisfactory level of
normalization. An example of this is a company database that contains employees,
dependents, and possibly several other entities. Since Dependents is a weak entity
related to an Employee entity, a possible method for implementing this relationship
is to create a separate relation for each entity. In other words, create one relation to
store instances of Employees, and another for instances of Dependents. This is an

awkward way to model this real world relationship because Dependents have little

42

to do with the company database. A more appropriate way to model this relation and
store the data would be with a multi-valued attribute of Employee; however, multi-
valued attributes are typically not supported by RDBMSs. The attribute of
Employee, call it Dependents, would store multiple instances of dependent entities.
By storing the entities as an attribute, there would be immediate access to the
dependant information whenever an employee object is retrieved.

To model this relationship in most RDBMSs requires two separate
relations, an employee relation to hold instances of employees, and a dependent
relation to hold instances of dependents. This greatly reduces the level of
abstraction, and in some complex systems adds to the level of confusion. It also
requires fairly complex algebra to retrieve some information. For example, if a user
wishes to retrieve a list of Dependents for each female employee, five relational
algebra statements are required. In the previous approach, only two are required, a

selection of all female employees and a projection of the Dependents attribute.

¢. Tuples Lack Function

It is attribute values that are stored in a relational database. While this
is good for many bookkeeping applications, it is not desirable for many graphics
based applications. In the average relational database, displaying a tuple or specific
attributes of the tuple is a simple task that can easily be done by the database system.
This is because the values are simple ASCII text or numeric values. Displaying a
graphical object is not as simple. Consider the example of a multi-media database
that stores animated pictures and sounds as well as textual or numeric data. If the
user wants to display the animation sequence, the object retrieved had better have a
function called display to play the animation because a non-application specific
DBMS will not have the ability to do this. Also, if the user wants to play the sound

clip that is stored in the object, then there had better be a play-sound function

43

because the DBMS does not have this capability either. A display method could also
be written to display different things based upon the user’s view of the object. This
is not possible in a relational database because the information in the database does
not carry any of the functions associated with the data. Therefore, current systems
are only as good as the applications programs written for each specific application,

as the data does not contain any information about how to handle itself.

d. Lack of Inheritance

Relational databases do not provide any means for defining attributes
based upon previously defined attributes. Instead of being able to inherit previously
defined attributes, the user must create new tables and new relationships between the
tables to accomplish the same goal. For example, an employee database consists of
employees who are all people. People all have the same general set of characteristics
such as color hair, color eyes, name, age, etc. All of the employees, in addition to
being people, are also members of a specialized group, such as hourly_employees
or salaried_employees, with their own specific attributes. Using an object-oriented
approach, each type of employee could be a descendent of the class People, and as
such would have the characteristics previously mentioned. In a relational database,
however, employee objects are represented as tuples in three different tables, one
table contains all instances of people, another contains all instances of
hourly_employees, and a third contains all salaried_employees. In an object-
oriented approach there would only need to be two tables, one for hourly_employees
and another for salaried_employees, because each type of employee would have all
the attributes of people as well as the attributes specific to their class (i.e., hourly or

salaried employees)

2. Object-Oriented Databases

Although, OODBMSs are a step in the right direction for database
technology, they lack certain features which make them inadequate for tomorrow’s
applications. Specifically, the solid mathematical foundation and the standardization
of the relational data model makes it a more attractive solution for many applications
despite its limited modeling capabilities. If these deficiencies are overcome, there
should be no reason why OODBMSs cannot gain the “lion’s share” of the database
industry, especially if they include the capability to efficiently model relational

databases.

a. Lack of Mathematical Foundation

Relational algebra operations can be proven to be complete and correct
based upon mathematical set theory, whereas OODBMS operations cannot. This is
because there is no core of operations that has been thoroughly tested and proven for
OODBMSs. This is definitely a limiting factor in OODBMSs because users want to
know that they are definitely going to get the correct answer when the database is
queried.

As previously mentioned, all relational operations can be built from the
following operations: union, difference, projection, selection, and Cartesian
product. These operations are based upon the ones developed by mathematicians,
and can be combined to form all other types of relational operations. This provides
the database user with a certain level of security as all operations conducted on a

database are guaranteed to be correct and complete.

b. Lack of Standardization

The other major deficiency in current object-oriented databases is the
lack of standardization of operations and class libraries, which is one of the strongest

features of relational databases. Although each vendor’s version of a relational

45

database system may be different, the basic operations are all there and the systems
are therefore functionally equivalent. Such a core of operations does not exist in
object-oriented databases because object-oriented programming still lacks a formal
definition. Consequently some vendors provide languages that they call object-

oriented simply because they contain support for objects or abstract data types, but

not inheritance!. Once an industry-wide standard is adopted, a core of features can
be required for OOPLs as well as OODBMSs and standardization will not be an
issue.

All the OODBMSs surveyed for this thesis provide a class library, but
each library is different. There is no standardization between systems, and one
cannot count on all the classes used in one system to be available in the next. If there
were a standard minimum set of operations required for all OODBMSs, and if it
could be proven to be complete, then OODBMSs would almost certainly become

more widely accepted.

¢. Lack of Support for Relational Operations

This is understandable because object-oriented databases are not
normally organized into logical relations. Object-oriented systems provide their
users with a large storage area in which they can store any type of object. In the
interest of compatibility and completeness, however, why not provide support for
relational operations as part of the system? As this thesis points out, relational
operations can be added to an object-oriented database, and in fact should be.
Opponents of this idea might state that hierarchical and netwcrk databases are not
currently supported, so why support relational? The answer to this is easy, they

should all be supported [FN92]. The hierarchical data model lends itself to be easily

1. Systems supporting objects but not inheritance are more appropriately considered “object-based”
[Wegn87].

integrated into an object-oriented database, and to a lesser extent so does the
network. The flexibility of object-oriented languages and OODBMSs make it fairly
easy to achieve this goal, but that is another issue. Compatibility with the relational
model would definitely increase the credibility of OODBMSs. It would also open
the door for developers to build relational systems for users in an OODBMS to allow
for the future expansion of the database application as the needs of the customers

change.

3. Relational/Object-Oriented Management System

The Relational Object-oriented Management System (ROOMS) as
proposed in [Nels88, NMOO90] is the model that this thesis is built upon. This
system, however, lacks secondary storage features and this short-coming is the
reason this thesis was written. The implementation proposed in this thesis adds the
capability to store data to secondary storage, turning the ROOMS concept into a true

database system.

4. Desired Properties of Database Systems

An extended relational system that could provide the ability to define
complex data types such as sounds, pictures (including animation), and composite
objects would be a good start. However, relational databases will never be a
complete solution as they lack the ability to store functionality associated with the
objects that they store.

Object-oriented databases need only add support in their class libraries for
relations, records, and relational operations. The five basic relational operations
should be supported in every OODBMS. This adds to the credibility of the system,
and would help to standardize these types of databases.

47

B. WHY A RELATIONAL/OBJECT-ORIENTED DATABASE

The main reason that a relational/object-oriented database is important is
because the world consists of objects that can and should be represented in a state
that more closely represents their true structure. An object-oriented database can
represent objects; however, current object-oriented database systems lack the
mathematical foundation relational databases provide. Relational databases lack the
modeling power of object-oriented databases, however, they provide a rich set of
operations and rules for manipulating data. A combination of the two is a logical
step in the advancement of database technology.

An example of how a relational/object-oriented database could be used was
presented in [Nels88] and bears repeating. The example is a real estate database. It
was pointed out that most real estate databases are already maintained by relational
database systems. However, if a realtor wants to maintain all of the textual data
regarding a piece of property, as well as blueprints and drawings of the house, most
relational databases fall short. Also the database is not capable of storing maps of
the surrounding neighborhood so that prospective clients can see what the general
layout of the neighborhood is like, where the schools and churches are, and so on.

In a relational/object-oriented system, each record for a piece of property could
have a blueprint stored in it as well as coordinates of the property that could be cross
referenced to an area map. Depending on the query, a textual listing of the property
information could be generated, or a picture could be displayed, or a combination of
the two could be displayed. Also if the realtor wants to give the prospective buyer a
map showing the property and its surrounding neighborhood, a map could be printed
by performing a query on the table holding the property listings as well as the objects

containing maps of the city.

C. WHY THIS WAS THE APPROACH TAKEN

This thesis extends the ROOMS concept into a full-fledged RZOODBMS. The
R/OODBMS is implemented in Prograph, an OOPL that includes built-in database
primitives for storing and retrieving objects in secondary storage. An R“ZOODBMS
is also currently being implemented in a commercially available OODBMS
[Spea92]. That implementation (when complete), along with this implementation,
will complete the proof of concept of the feasibility/viability of an RZOODBMS
which can meet the needs of both relational and object-oriented users.

Prograph was chosen as the language for this implementation primarily because
it does offer built-in database primitives, as well as other desirable features. This is
favorable because all of the file creation and accessing is done through these
primitives, allowing the design and implementation to focus on the relational/object-
oriented database concept rather than being bogged down with the details of reading
and writing information to the disk. Some features were exploited and are discussed
~in the following chapter, however, these features can easily be replaced if desired.
Another reason for choosing Prograph is because it exists on the Apple Macintosh
which has a standardized operating system and routines available in ROM to handle

the manipulation of pictures and sounds much more easily than any other platform.

49

IV. AN R/OODBMS IMPLEMENTED IN PROGRAPH

This chapter presents the design decisions and basic assumptions made in the
development of this relational/object-oriented database system. The structure of the
database is described and the Prograph classes designed for this thesis are explained
in detail. Source code for all classes is contained in Appendix C.

A. BASIC ASSUMPTIONS

This database is built around six basic assumptions:
1). the database applications will be developed in Prograph
2). a persistent called current DB exists!
3). the records stored in each relation must be instances of the same type
4). all records being stored in a relation must be descendents of class
Record
5). every relation contains at least one key

6). every relational operation returns an instance of Temp Relation

Many design decisions affecting this implementation rely heavily on these
assumptions holding true. The following sections give more detailed descriptions of

why these assumptions were made and how they affect the database design.

1. Applications Will Be Developed In Prograph

This assumption is made because the only way to design classes in
Prograph is through the Prograph environment. Alternatively, it is possible to design
a Record class that contains an attribute which is a list; this list could be then be
treated as a “set” so that all the attributes of the record could be stored in a particular
position in the list. This would allow users to build relations without going into the

Prograph environment, as long as an appropriate interface is provided. However, it

1. This persistent can easily be created when the R/OODBMS application is created.

RV

would also reduce the types of objects that could be stored in a relation because users
would be unable to develop their own classes to be stored as records. Using the list
approach also reduces the objects being stored to values only. Therefore, a major
benefit of storing objects is lost because the value-only objects lack function.
Access to the Prograph environment is also required because some methods
of Record and Relation should be over-shadowed for user-defined objects to be
handled properly. The class Record, for example, makes some assumptions that are
only true for simple objects. An example is the keys method of Record which
defines every attribute of the user-defined record to be a key. This is a safe
assumption if all the attributes are simple such as a strings or real numbers.
However, if the attribute is not a simple type, it cannot be a key in a Prograph
database. For example, an attribute that is an instance of another class could not be
used as a key value because keys in Prograph are limited to boolean, integer, natural,

real, and string,

2. Current DB Persistent

A persistent is assumed to exist called current DB. It is used to allow locals
within methods to open the database tables without requiring the method to have an
input of the current Database instance just to pass it to the local. Since access to the
database file is achieved through the database id, and access to the Structure Table
is through the Structure Table id, both pieces of data are required to open an existing
relation. It was decided that the logical course of action is to use the persistent rather
than clutter every method with extra terminals.

This assumption is related to the database application and as such it is
assumed that the database developer will provide this persistent, or selectively load

it. The second reason for creating a current DB persistent is because Prograph allows

51

multiple database files to be open, and current DB provides a convenient place to

store an instance of the database currently being manipulated.

3. Relations Contain Records of the Same Class

To model a relational database, all the records in a relation must be of the
same class. The reason is because all records in a relation are made up of attributes,
each with specific domains. Each tuple in the relation has corresponding attributes
with the same domains. In general, it does not make sense to put different types of
records in one relation; rather, they should be stored in different relations. For
example, if the user decides to create two types of employee objects, say an
hourly_employee and a salaried_employee, to be stored in a database, then there
should be a class definition for each. If each type of employee is of a different class
because they differ in some way, then they should not be stored together in the same
relation. Even if they have exactly the same attribute types but function differently,
they should be separated into two different relations. This is primarily a database
application design issue, but this constraint is imposed to more closely adhere to the

relational model.

4. User-defined Records Must Be Descendents of Class Record

This is a very important assumption, because when the end-user tries to
create a new relation to be stored in the database the system looks for descendants
of class Record and only allows the user to select one of these dependents to be
stored in the relation. The system also names the relation based upon the name of
the class being stored in the relation. In other words, if the user wishes to create a
relation called Person, then there must be a class Person defined as a descendant of
Record and there must not already be a relation called Person declared in the
database. The assumption that relations are made up of records is used both directly

and indirectly in many methods.

5. Every Relation Contains At Least One Key

As previously discussed in Chapter II, the only way to access a cluster
directly is by using the cluster id, and indirect access is achieved through keys
associated with clusters. In order to access the clusters in the database, a key called
~primary key has been defined for all relations. The ~ is used to ensure that it will
be the last key associated with a table; also, if the user wishes to define a key called
primary key there will not be a name conflict. The value of this key is determined
by the application programmer. The intended use for this key is to store the primary
key (in other words a unique value associated with the record) of each record since
every record must be unique in a relation. However, this key is not limited by this
convention.

One use of the ~primary key is to store a default value of ‘a’ or ‘1’ for
every tuple. This has the effect of ordering the keys in the order in which the records

are written to the database.

6. Every Relational Operation Returns A Temp Relation

Every relational operation has to return the same kind of result for
consistency. It does not make sense to have one operation return a Relation while
another returns a list, or a Temp Relation, or something else. This is important when
considering the Cartesian product and projection operations. These two operations
do not normally return relations that look like any other relation.

The reason a Temp Relation is returned rather than a Relation is because
tuples of a relation are actually stored as instances of the class that defines them,
whereas the results of relational operations may not be instances of a specific class.
Temp Relations are written to secondary storage as lists, because Prograph does not
allow declaration of classes on the fly and because a Prograph list can have instances

of classes or any other object as an element. For example, if the user performs a

53

Cartesian product operation on two relations, the result is a new relation with tuples
containing all the attributes of the first relation and all the attributes of the second.
There is no way to anticipate all the Cartesian product queries the user will perform,
so there is no way to define a class for each Cartesian product result. Similarly, there
is no way to anticipate all the projections a user will make, so classes cannot be

defined for this operation either.

B. DESIGN DECISIONS

Before designing the classes for this implementation, some decisions as to the
structure of the database had to be made. These included how to represent the
relations and how to implement the relational operations.

It was determined that a class called Relation should be created. Instances of
this class require only three attributes. First is the relation name, which is taken
directly from the class definition of the class to be stored in the relation. Next is
attribute-names which is a list of all the attributes of the tuples in the relation. The
last attribute is attr-types, which is also a list containing the type of each attribute.

It was also decided that each relation should be stored as a Prograph database
table containing instances of Records as clusters, and that each instance of a
Relation would be stored in a Structure table. The Structure table contains a single
entry for each relation stored in the current database. These entries are instances of
Relation and have a key value associated with them for fast retrieval. The key value
is the name of the relation so all relations must have different names.

The decision was made to represent the relational operations as methods of the
class Relation. In examples provided by TGSSystems with Prograph, they have
implemented some of the relational operations as separate classes rather than
methods of a class Relation. In examining relational databases and the relational

model, it became apparent that the relational operations should be methods, rather

than separate classes. The relational operations are functions or operations that act
upon instances of Relations, and as such should be methods of the Relation class
rather than separate entities that act upon objects of type Relation. The latter
approach is more of a structured programming approach rather than an object-

oriented approach.

C. THE STRUCTURE OF THE DATABASE

The database files created by applications using these classes all contain a
Structure Table. This Structure Table, as previously mentioned, holds instances of
every relation created for the database. This table is required because once a relation
is created, information about it needs to be stored for future sessions. In a Prograph
database, this information about the relation must be explicitly written to the
database disk file or it will be lost from one session to another. This is because there
is not a single large repository for all the database applications to use as in most
OODBMS:s. Each Prograph database is made up of two files, the database file and a
key file, which do not have access to information about any other databases.
Although Prograph database files automatically maintain the names of all the tables
associated with the database, other information about the attributes in each relation
is not maintained. Thus, without the structure table the user would have to create a
new instance of a relation and compute the associated attribute characteristics every
time a database is opened. Using the structure table approach, the user simply
retrieves the relation instance from the table when it is required.

When a new relation is created, the relation bears the same name as the class
whose instances will be stored as tuples in the relation. This class representing the
tuples must be a descendant of the class Record for this schema to work. Once this
is done a Prograph table named for this class can be created and tuples can be written
to the disk.

55

Every Relation, Temp Relation, and tuple is written to the disk file rather than
being stored in memory. This feature provides consistency and some level of
security for the data being stored. Previous implementations of ROOMS did not
have secondary storage features and therefore the data lacked any permanence. This
implementation has features that allow the use and manipulation of the data that is

stored to a disk file.

D. REQUIRED CLASSES

To implement a relational/object-oriented database in Prograph four classes
were designed. First is the class Database. Instances of this class are created for
every database that is opened by the user. This is necessary because Prograph allows
multiple databases to be opened at the same time, as well as a single database being
opened by more than one application. The Database instances maintain the path to
the open data file, as well as the information about the database file (i.e., the file
name and the volume id as well as the Structure Table id).

The next class that was required is the Relation class. This class is the
workhorse of this design, containing attributes describing the keys to access the
tuples of the relation as well as the path to the database. Most importantly, it also
contains all of the methods required to perform relational operations on the data in
the database. A descendant class of Relation is Temp Relation. This class
represents derived relations and modifies some of Relation’s methods to handle
these temporary relations.

The last class required by this design is the class Record. This class is the root
of the sub-tree containing user-defined classes that will represent the tuples of a

relation. Each of the afore-mentioned classes are now described in greater detail.

1. Database Class

This class contains basic methods required to create and access a Prograph
database. A database object contains the following instance attributes: file name, file
volume id, database id, Structure Table id, and temp relation list. File name and file
volume id exist primarily to handle the opening and closing of the physical disk file
(necessary for multiple access to the file). The attribute database id is a pointer (or
path reference id) to the database file. Structure Table id holds a pointer to the table
in the database that contains all the relations associated with the database. Finally,
temp relation list is a list of temporary relation names created by user queries. The
temporary relations (which are simply Prograph tables) are cleaned up by the close-
db method.

Some of the methods required for this class are new-db, open-db, close-db,
new-relation, and display-yourself. There are several other support methods not
critical to the design of the overall system. The first method, new-db, presents the
user with a standard Macintosh file creation dialog box and then creates the database
files (database and key file) using Prograph database primitives. It also creates an
instance of Database and a table in the database file to maintain the structure of the
database (the Structure Table). Once the Database instance has been created, it is
stored in a persistent named current DB to eliminate the need to constantly pass
database instances from one method to another. There is also some error checking
included to ensure that no NULL files are created.

The next method in this class is the open-db method, which is responsible
for opening a database file. It has no inputs because it uses Prograph primitives to
display a standard Macintosh file selection dialog box which allows the user to find
and select the database file to open. It then prompts the user to select the mode in

which to open the database (either share, query, or update mode). Once the files are

57

opened, an instance of Database is created and placed into the current DB
persistent and the database id is passed as the output of the method. Again there is
error detection and handling to prevent the user from opening a NULL file. If a
NULL file is selected this method generates a failure control and passes it to the
calling method to be handled.

Next is the close-db method, which removes the selected Database
instance from the current DB persistent, deletes any temporary relations, then
closes the database file.This method also requires no input and produces no output
as there is currently only support for one active database at a time.

A delete-db method is also provided to remove a database from the disk.
This method presents a standard file selection dialog box and once the selection has
been made, the user is asked to verify the delete. If the user acknowledges the delete,

then the database file and the key file are permanently deleted from the disk.

2. Relation Class

There are three instance attributes of this class; relation name, attribute-
names, and attr-types. Relation name contains the name of the class stored in the
relation. Arntribuie-names is a list of attribute names of the class being stored in the
relation. The value of this attribute is taken directly from the user defined class,
which makes the application programmer responsible for putting in the correct
attribute names. Since each tuple is made up of one or more attributes, this list is
used to determine “union compatibility” and to verify selected attribute names for
projections and selections actually exist in the relation being queried. Attr-types
serves the same type of purpose as attribute-names, except that the elements of its
list are the attribute types (i.e., string, integer, etc.) of the entries in attribute-names.

This class contains many methods, some of which are required by other

methods and some which exist to reduce redundant code in other methods. The

58

major methods required are: select-relation, add-tuple, remove-tuple, display
relation, union, projection, selection, difference, and Cartesian product.

The method select-relation takes as an input a Database instance and
presents the user with a dialog box asking which relation to open. Once the user
makes a selection, the corresponding Relation instance is retrieved from the
structure table and returned to the caller. The purpose of this method is to retrieve
Relation instances from the database file for use in the application.

The add-tuple method takes as input an instance of a Relation and the tuple
(object) to be added. The tuple is checked to ensure it is of the correct type to be
stored in the relation. Then all of the key values are extracted so the appropriate key-
cluster associations can be made, including the ~primary key value. It makes use
of a method defined for all Records called ger primary key to get the value of the
primary key.

The remove-tuple method takes as inputs the Relation instance and the
tuple id, and has no outputs. It is assumed that the user will have already selected the
tuple to be deleted prior to calling this method.

Display-yourself is a method that displays the relation one record at a
time. This is a method that can be overshadowed to suit the needs of the application.
There is one input, the instance of the relation, and no output because the output is
directed to the screen.

The next five methods to be discussed are the relational operations.
These methods are able to handle any type of object that can be defined in Prograph.
The application programmer can, however, re-write methods for any of the basic
five operations to take advantage of the keys declared for their objects. For example,
the select operation may be too slow because it looks at each record and compares
the attributes to see if they are equal. If the attributes in question were stored as keys,

search times would most likely decrease.

59

The three inputs to every relational operations are: a Relation, another
Relation (or Temp Relation) or a list, and the resulting relation’s name. Every
relational operation also outputs a Temp Relation, which is stored as a table in the
Prograph database file with the resulting relation’s name as the name of the table.

The union method opens both input relations and then writes every
tuple of the first relation to the Temp Relation created. It then reads each tuple from
the second relation and searches the first relation to see if their is a match. If a match
is found, then it is not included in the Temp Relation, otherwise, it is added to the
Temp Relation. This is done to ensure the uniqueness of every tuple in the result
relation.

The second input to the projection method is a list of attributes. The
attributes in this list are compared to attribute-names in the input Relation instance.
If they are valid, the method proceeds to read every tuple in the relation, writing only
the values of the attributes requested to the Temp Relation.

The second input to the selection method is the selection criteria in the
form of a list containing the attribute for the comparison, the operation (=, >, etc.)
and the value. The method calls upon the user-defined methods for equality (equal?
greater-than?, etc.) to determine which tuples should be put into the Temp Relation.
Default equality methods are defined in the Record class, but they are fairly simple
as it is impossible to anticipate every object defined for a record.

The Cartesian product method reads in a tuple from the first relation,
converts it to a list, and then converts every tuple in the second relation to a list and
appends them to first list. In other words, if the first relation has two tuples a and b
and the second relation has three tuples x, y, and z, then the result of the Cartesian
product will be a relation with six tuples: (a, x), (a, y), (a, z), (b, x), (b,.y), (b, z). This

method uses the ~primary key to step through each relation. This implementation

could be looked at as two nested “For-statements” in a structured programming
language.

The difference method opens both relations, examines each tuple in the
first relation and compares it to every tuple in the second relation to see if they
match. If they do match, the tuple is not included in the resulting Temp Relation,
otherwise, it is included. The comparison in this method is based upon the user-

defined (or default) equals? method in the user-defined record class.

3. Temp Relation class

This class defines no new attributes; however, all relational operations are
redefined. The reason these methods are redefined is because the Relation versions
of these methods make the assumption that the attribute names are the names of
actual attributes of a class. In contrast, the attribute names associated with Temp
Relation objects are merely ways to locate the attributes based upon their position
in the list that they have been stored in. For example, if a Temp Relation is created
and has an arrribute-names value of (Iname, age), then a tuple stored in the Temp
Relation could be (Filippi, 27). To retrieve the age attribute of this particular tuple
the position of the attribute named “age” would have to be determined from the
attribute-names list. Since the value of the position of the “age” attribute is 2, a get-
nth (with n=2) could be performed on the tuple in question and the value 27 would
be returned. In the Relation version, to retrieve the attribute age from a person
record a “get” method is performed on an instance of person class with the attribute
name “age” injected into the operation.

All the changes to the relational operations have to do with how attributes
are retrieved and how they are accessed. The algorithms for performing the

operations are the same, so they will not be discussed further.

61

4. Record class

The Record class has three class attributes: artr-types, attr-names, and
keys. These attributes can either be set directly by the programmer when the classes
are defined (i.e., default values can be set), or they can be defined when they are
accessed. The purpose of the first two attributes is to provide the Relation class
attributes the values they need to keep track of the attributes of the tuples being
stored. The keys attribute is used to create keys for the relations in addition to the
~primary key. For example, the programmer may design records with an attribute
X that is the primary key, but know that many queries will be performed based upon
a non-unique attribute Y. Then the attribute Y can be declared as a key by placing
the attribute name Y in the keys attribute. Then when a selection method is written
to overshadow the selection method of Relation, the key Y can be used to retrieve
values from the relation, rather than reading every tuple to determine whether the
condition is met. This is useful if the database application programmer wants to
create a descendant of Relation and overshadow some of the relational operation
methods. The applications programmer can then write these methods in such a way
as to take advantage of the key and speed up the query.

The methods provided with the Record class are attr-types, attr-names,

keys, equal?, display-yourself, and ger primary key. The first three methods are set

methods?. These methods can be overshadowed by the programmer if deemed
necessary. The keys method treats every attribute as a key and sets the value of the
keys attribute to a list containing the attribute name of all the attributes of the class.
This is fine if all the attributes are simple, but if the attributes represent a list or an
instance of another class, they will not make valid keys and the system will most

likely crash.

2. Set as in “set” or “get”, vice “set theory”.

The equal? method evaluates two records and determines equivalence. If
the objects are composed of simple attributes, this implementation of equal? works
fine because the objects entering the method are converted to lists, and the lists are
compared with the “=" primitive. For more complex objects an equal? method
should be defined by the application programmer.

Display-yourself is a method that simply invokes the display primitive. If
the record contains special types of objects such as pictures or sounds, it may be
more desirable to create a display-yourself method with the appropriate interface to
best display the object. Even for simple objects, a display window could be designed
to make the result more aesthetically pleasing.

The get primary key method must be over-shadowed unless the first
attribute defined for the user-defined class is to be the primary key value. This
method is designed to get the value of the first attribute declared in the class and use
it as the primary key. If the primary key value is to be something more than a single
attribute, the method should be over-shadowed. An example is, a company database
that contains a relation between employees and projects. The combination employee
number and project number might be the only way to distinguish one tuple from
another (i.e., the primary key). If this is the case the get primary key method could
be written to get the values of employee number and project number, concatenate

them together and return the catenated value as the output of the method.

63

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
RESEARCH

The purpose of this research was to design and implement a relational/object-
oriented database system with secondary storage features. This was a continuation
of a previous research project and has satisfactorily demonstrated that the concept
of a relational/object-oriented database management system as proposed in [Nels88,

NMO90] can be extended to a system with secondary storage.

A. SUMMARY

A detailed literature review was accomplished in which object-oriented
programming, databases, and Prograph were investigated. The feasibility of creating
a relational/object-oriented database system was determined, and an
implementation was proposed and implemented.

The implementation is language dependant, but shows that the concepts are
valid for any OOPL with secondary storage features. Therefore, the concepts
proposed are also valid for an OODBMS (which can be considered to be
specializations of OOPLs).

B. CONCLUSIONS

OODBMSs can be used to store and manipulate relational databases. Since it
was shown to work in a lisp-based language designed to be bolted on top of an
OODBMS [Nels88, NM090], and it has now been shown to work in an OOPL with
secondary storage features, it is safe to say that it should work within any OODBMS.
Since OODBMSs contain all the features of OOPLs, along with the ability to handle
the storage and retrieval of data to and from secondary storage devices, they should
therefore be able to handle both relational, and object-oriented data within the same

system.

C. SUGGESTIONS FOR FUTURE RESEARCH

Future research in this area should include, but is not limited to, the following
areas: implementation of relational operations in a commercially available
OODBMS, optimization of relational operations in an OODBMS, allowing
complex objects to be keys, declaration of a standard class library for OODBMSs to
include the relational operations, and extension of the ideas presented here to

include addition of other types of databases to OODBMSs.

1. Implement Relational Operations in a OODBMS

Although this project implements a relational/object-oriented database, the
final proof of concept is whether or not this idea can be implemented in an existing
OODBMS. The class libraries available in OODBMSs are usually very rich and
should provide a means for implementing the ideas posed herein in a much more
elegant and efficient way.

Once an OODBMS implementation is completed, the proof of concept for
adding relational operations to an object-oriented database management system will

be complete.

2. Optimization of Relational Operations

The relational operations presented in this thesis were written to prove that
relational operations could be added to an object-oriented system with secondary
storage features. Although this was demonstrated, the time required for some queries
on large relations is unacceptably slow. This is because the relations are retrieved
from secondary storage and then written back to secondary storage in a different
form for every query. Disk access time, even on a fast system, makes these

operations perform at a less than desirable speed.

65

3. Allow Complex Objects to be Keys
In this implementation the values of keys are limited by the language to
booleans, integers, real numbers, or strings. In a general purpose RFOODBMS it is
important to allow arbitrarily complex objects to be key values in a relation.
Limiting keys to simple data types limits the usefulness of the system in much the
same way as the limited number of data types available in conventional relational

database systems limit their use.

4. Addition of Other Types Of Databases To OODBMSs

Although relational databases can be represented in an OODBMS, what
about hierarchical or network databases? Initial work has been done in this area
[FN92b], but a more detailed design and implementation should be attempted to
determine whether OODBMSs are able to efficiently handle the various data
models. The implementation of a hierarchical database and a network database
within an OODBMS should sufficiently prove the point that OODBMSs are indeed
sufficient to allow the storage and retrieval of all types of database systems.

5. Standardized Class Library For All OODBMSs

Once a determination as to the feasibility of implementing all the current
data models within the confines of OODBMSs is established, a logical step would
be the standardization of the class libraries associated with each vendor’s
OODBMS. Just as SQL is the standard for relational database languages, a standard
minimum requirement should be developed for all OODBMS vendors. This would
ensure that regardless of which OODBMS you had access to, you would still be able

to use it to store and manipulate the type of data in any way desired.

APPENDIX A - CREATING A SAMPLE DATABASE APPLICATION

A. BASIC ASSUMPTIONS

It is assumed that the user has a working knowledge of Prograph and database
design issues. The primary purpose of this appendix is to show how to utilize the

tools provided in the classes written for this thesis.

B. DESCRIPTION OF THE METHODS PROVIDED

Appendix B presents all of the methods in each class in their graphical
representation. The inputs and outputs for the methods that will be directly called by
the user are annotated in the graphical representations. All of the methods that
should be called by the user are briefly described in the following paragraphs. For a
more detailed description of each method see Chapter IV and Appendix C.

1. Database Class

The following methods of the Database class should be used by the

applications programmer to create a database application.

a. new-db

Used to create new database files (the database and the keys file). This

method fails when the db-new primitive fails.

b. open-db
Used to open an existing database. This method fails if the db-open

primitive fails.

P

. ”
[[WIVAY A7V

Closes an open database.

67

d. delete-db

Deletes an existing database from secondary storage.

e. rename-db

Rename a database.

f. display-yourself
Uses the show primitive to display a list containing the names of all

relations in the Database.

g. new-relation

Creates a new relation based upon the sub-classes of Record. This

method fails if the database is not opened in update mode.

h. delete-relation

Provides the user with a dialog box from which a relation can be

selected for deletion.

2. Relation Class

The following methods should be used by the applications programmer to

create and manipulate relations in a database.
a. select-relation
Presents a dialog box containing every relation that exists in the current
database, returning the relation selected.

b. add-tuple

Adds a tuple to a relation. The inputs are an instance of Relation and

an instance of a user-defined record (tuple).

¢. remove-tuple

Deletes a tuple from the relation. It is assumed that the cluster id for the
object has been retrieved so the cluster (tuple) can be deleted.

d. union
Performs a union of two relations. Every tuple from the first relation is
written to the Temp Relation, and every tuple from the second is evaluated to see if
it is the same as one from the first relation; if it is, it is not written to Temp Relation.

This method fails if the two relations are not union compatible.

e. selection

Retrieves every tuple from the relation whose attribute(s) satisfy a
selection condition and places the results in a Temp Relation. If the attribute(s) used

in the selection condition does not exist in the relation, this method will fail.

J. projection
Retrieves only the requested attribute(s) from every tuple in the

relation, placing them in a Temp Relation.

g. Cartesian product

Produces a Temp Relation that contains tuples created by appending
the value of every tuple from relation number two to each tuple of relation number
one. The Temp Relation has as many attributes as the sum of the two input relations

and as many tuples as the cross product of the relations.

h. difference

Produces a Temp Relation with all of the attributes that are in the first
relation not in the second relation. This method fails if the two relations are not

union compatible.

69

i. display-yourself
Uses the system defined primitive display yourself to display every

tuple in the relation.

3. Temp Relation Class

The methods of this class have the same functionality as the Relation class
methods of the same name. The only difference is that these methods have as the first
input to each relational operation an instance of a Temp Relation, whereas the

Relation counter-parts have a Relation as the first input to the relational operations.

4. Record Class

These methods will most likely be over-shadowed by descendents of
Record. However, since these methods must be present in some form, they are

included in the class definition of Record.

a 53<>52
All of these methods take two tuples and compare them. The
comparison operations provided here are based upon the tuples containing simple

attributes, and the attributes values are compared to determine equality.

b. display-yourself
This method uses the system defined display primitive to display the

record.

c. get primary key
This should definitely be over-shadowed unless the primary key

happens to be the first attribute declared in the record class.

70

C. BUILDING A DATABASE APPLICATION

1. A Simple Application
The sections that follow will take you through creating a yery basic
database application which can be run in the Prograph Editor or compiled into a

stand alone application.

2. Basic Description of the Application

We will be creating a simple database of people records. There will be two
kinds of people, students and teachers. Each type of person has the attributes: last
name, first name, age, sex, address, and widget. The first four attributes are simple
attributes, the address attribute is another class containing the attributes number,
street name, city, state, and zip code. The widget attribute is an arbitrarily complex
object.

Since we have two different types of people, we will create the class people
with the descendants students and teachers. Since Prograph does not currently
support multiple inheritance, people must be a descendant of Record, and students
and teachers must be descendants of people.

We will now show how to create a single database to hold the relations

students and teachers, and how to perform relational operations on these relations.

3. The First Step

The first thing to do after opening Prograph is open the Classes window by
selecting it from the Windows menu. Next, selectively load all the classes from the
file Thesis.pgs. This is done by selecting Open from the File menu. When the open
file dialog box appears click on the Selective Load check box (this will also
automatically select the Incremental Load check box), navigate to the file Thesis.pgs

and choose the Open... button. This presents a list of all the classes in the file. Select

71

every class by holding down the shift key and clicking on every class name (all of
the current Prograph System Classes are included in this file). Now do the same
thing with the Universal methods. Open the Universal window by selecting
Universal Methods from the Windows menu and repeat the steps above for opening
the Thesis.pgs file. Instead of a list of classes in the selection window, a list of all the
methods in the file is presented. Select only the methods named make list, make
class list, and read & write. The final thing to do is open the Persistents window by
selecting it from the Windows menu and create a new persistent by clicking in the
white space of the window. When the new persistent appears, name it current DB. It
is very important that it be named correctly, note that Prograph is case sensitive, so

it must be typed exactly as it appears.

4. Create The Classes

Open the Classes window (which looks like Figure A .2). Click anywhere to
create the address class. Once a class icon appears in the window, type address and
then double-click on the left side of the icon to open the attributes window for the
class. This is where the attributes number, street name, city, state, and zip code are
created and given default values. Click in the white space of the attributes window
to create a new attribute. When the icon appears, type in the attribute name (i.e.,
number). Do this for every attribute. After creating all of the attributes, close the
window so that the Classes window is in view.

Repeat the above procedure for the people class. Except this time after
creating and naming the address attribute, double click on it. A window opens that
allows the value of the attribute to be set. Scroll up the list on the left to the word
address. Select address by clicking on it and then press the OK button. The default

value of the attribute address is now set to be an instance of the class address.

72

Appltion Menu Menu ltem Yindow Yindow Item

e

Database Relation Record

o

Temp Relation

Figure A.1 Classes Window

Next, create a sub-class of people. Begin by clicking on the people class
icon. Then while holding down the option key, move the mouse to some white space
and click the mouse button. A new class icon will appear with a line connecting it to
the class people. Type the word students to name the new class, then repeat the
procedure and create a new class called teachers. Once this is done the Classes
window should look similar to Figure A.2. Now that all attributes for students and
teachers are finished, the only thing left to do is to attach the class people to the
Record class icon. Do this by clicking on the Record class icon until it highlights,
hold down the option key, and click on the people class

The user interface can now be designed as in any Prograph application. The
next few paragraphs present a very basic interface; for more detailed information

refer to [TGS88a, TGS88b, TGS91].

73

Applation Menu Menu ltem Yindow Yindow Iltem

N

Database Relation Record
¥
- @
Temp Relation

people address

students teachers

Figure A.2 After Building New Classes

5. Creating the Interface
Keep i mind that the windows to be used for data entry, the windows to be
used to display the results of queries, and the query building window must be
developed. Since this application has relatively few queries that will be performed,
we will create a button for each specific query (e.g., a button for selection, a button
for projection. etc.). Another possibility would be to provide an interface that allows

the user to build queries dynamically.

74

-

a. Creating the Query Interface

To create the query interface, select Edit Application from the Exec
menu. This brings up a window that allows windows and menus for the application
to be created. We will now create a window that contains five buttons representing
the five basic relational operations. Select Window from the Classes scrolling list
on the lower left-side of the window, and then click on the >New Instance> button
below the list. This creates a new instance of window named Untitled. Double-click
on Untitled to open it for editing. Once the window is created, click in the white
space to create a new object. Once the object appears, double-click it to open a
dialog box to set the type of the object. When the dialocg box opens, Button is
selected by default so all that is required is to click the OK button. Once this is done,
another dialog box opens which allows the button to be named and a method
associated with it to be called when the button is clicked. Name the button Selection.
There is also a field for Click Method, type in “Selection”, and click the OK button.
This button, when clicked, executes a universal method called Selection. Create the
other four methods just like the Selection button. Once they are completed, hold
down the option and command key and double click on the white space in the
window. This brings up a dialog box that allows the window to be named and other
parameters to be set. Type in “Queries” in the Window Title field then click OK.

The interface for the queries window is now complete.

b. Creating the Data Entry Interface
To create an interface to allow the user to enter data into the database,
create a new window as previously described. Rather than Buttons, create Edit Text
objects on the window, one for each attribute of people objects (including the five
for address) except for the complex object widger, and name the objects the same

names as the attributes they represent. These Edit Text objects will be used by the

75

end-user to type in the values to be stored in the relation. Depending upon what type
of object a widget is, an interface specifically designed for the widgets wouid nave
to be created. Also create a button named Student and another named Teacher.
Once this has been completed, name the window (just like the previous window)
“Data Entry” and then close the window.

Now select each window from the scrolling list on the Application
window and press the Add To Active List button. This adds the new windows to the

application, and these windows will be opened upon start-up of the application.

¢. Creating the Menus

Finally, a menu should be added to the application that allows the end-
user to open and close databases as well as select relations to open. To create a menu,
select Edit Application from the Exec menu. When the window opens select the
Menus radio button and create a new instance (just like when the window instances
were created) and open it for editing. Name the menu “Database”, and tab to the
Item field. Type “New DB in the Item field. Tab to the Method field and type “New
DB”, then click the Insert After button. Repeat these steps for “Open DB” and
“Close DB”. Click the OK button when finished. Now create a menu called
“Relations”, and create menu choices for “Open Relation” and “New Relation”.

Now return to the A pplication dialog, select the menus just created, and
click the Add To Active List button. This adds the new menus to the applications

menu bar when it is run.

D. COMPLETING THE DESIGN

Now that the interface has been built, run the application and build the methods
for each button and menu item created while the program is executing. To do this,

select Run from the Exec menu. Both windows should appear, unless they were

76

designed on top of each other. If this is the case, select the title bar of the foreground
window and move it to expose the other window.

Once both windows are visible, select New DB from the Database menu. A
dialog box is presented stating that the universal method “New DB” does not exist,
do you want to create it? Respond by clicking the OK button. This will open a
method window with a dotted background. Double-click in the window to open its
editable case window. Now create an operation to call the new-db method in the
Database class. This method does not require any input terminals, and when
Prograph menu items call a method they always send it the instance of Menu, the
Menu Item, and an Event Record. Close the case window and press return to
activate the operation that was just created in the method window. When this
operation executes it will present the dialog box previously describe for the new-db
method. Now do the same thing with the Open DB and Close DB menu items.

Repeat the above procedures for the Relations menu except that when adding
the operation to each case window, it will be necessary to create an additional
persistent operation to get the value of current DB to feed into the Relation/select-
relation method (to open a relation) and Database/new-relation (to create a new
relation).

Now that the menus are done, the same type of thing must be done for the
buttons in the windows. The Queries window buttons will all require the user to
specify which relation/relations will be operated on, and what the resulting Temp
Relation will be called. The values can be obtained by using select-relation to get
the relation instances, and the ask primitive can be used to get the result name as
well as the list of attributes or selection condition depending on the relational
operation being performed. The root of the relational operations can be attached to

the Temp Relation/display-yourself operation (which will display every tuple in the

77

Temp Relation). In a more sophisticated implementation a window with scrolling
fields or other features would be used

The Data Entry window has only the two buttons Student and Teacher, and
the methods for these buttons can be created the same way as the previously
discussed buttons and menu items. For this implementation the buttons will both
make use of the Relation/add-tuple method to add the tuples to the database. They
will differ in that each will create an instance of the appropriate class (either
students or teachers) and this instance will be written to the correct relation by the
add-tuple method.

Once all the buttons and menu items have been created and fully implemented
a very simplistic application has been constructed. It could be compiled into a stand-
alone application by the Prograph Compiler or it can be used in the interpreted
mode. Naturally, some of the other features provided have not been discussed, but

could be easily implemented.

E. DETERMINING WHICH METHODS TO OVER-SHADOW

1. Database Class
The only method that might require over-shadowing is the display-yourself
method. This method displays a list containing every relation defined for the

database. It uses the show primitive to display the list of relation.

2. Relation Class

The display-yourself method could be over-shadowed by the programmer
because the current implementation reads every record in the relation and displays
them with the display primitive. Some of the relational operations could also be
over-shadowed (as mentioned in Chapter V) to take advantage of keys associated

with the user-defined records.

78

3. Temp Relation Class
None of the Temp Relation methods should be over-shadowed.

4. Record Class

Virtually all of the methods associated with Record can be over-shadowed.
The purpose of this class is to act as a guide for developing new records, but the
methods make no assumptions about the structure of user defined record. The only
assumptions made in these methods are that the class attributes contain the
appropriate values. What values go into these attributes are completely up to the
designer.

The equality operations (=, #, <, >, <, and 2) should be over-shadowed to
correctly handle comparisons of the objects. If these are not over-shadowed, some
relational operations may not return the expected results.

Display-yourself should be overshadowed to properly display the objects.
If it is not over-shadowed, the display primitive is used. This method should be
over-shadowed as part of the user interface design so when the records are

displayed, your windows are used.

79

APPENDIX B - ATTRIBUTES AND METHODS

V Batabase

til 6

V

file volume id
0

V

database id

0
Structure Table id
()
temp relation list
[@Database
. ‘ . Input: <<Database>>
Input: None Input: None >
“ Output: DBId ' Output: None ﬂ lu Output: <<Relation>>
new-db delete-db new-relation
ﬂ Input: None
‘ Input: None ‘\ input: None Output: None
K Output: DBId Output: None delete-relation
open-db rena.ne-db
Input: None @
' . Output: None
input: None N
Output: None l Use§ the shqw prlmitlyg temp relation list
to display a list containing
close-db

display-yourselithe names of all relations

in the Database

80

¥V Relation

relation name
NULL

\%

attribute-names

()

attr-types
@ Relation
Input: <<Relation>> =)))
ﬂ Output: Tabield ﬂ | Input: <<Relation>>, .<<Relat|on>>. result_name
Output:<<Temp Relation>>

open table anion

Input: <<Relation>> list of the form
Input: <<Relation>> ﬂ l (attribute, operator, value), resuit_name
Output: Primary key Id, Table Id Output: <<Temp Relation>>

selection

=)

open to ftirst tuple

Input: <<Relation>>, list of attributes, result_name
ﬂ Input: DBId ﬂ l Output: <<Temp Relation>>
Output: Tabield
select-relation projection
input: <<Relation>> Input: <<Relation>>, §<Re|ation>>, result_name
Output: None ‘ Qutput: <<Temp Relation>>
display-yourself difference

Input: name, <<Relation>>
Output: <<Temp Relation>>

Input:<<Relation>>, <<Relation>>, result_name
Output: <<Temp Reiation>>

Cartesian product

=)
=)

make Temp Relation
_] inout: Table 1d, tupls 4 l Input: <<Relation>>, <<Relation>>
: ' | Output: <<Relation>>, <<Ralation
Output: None utput: << ion>>, << >>
add-tuple verily union compatibility
t Input: <<Relation>>, Cluster D ‘
ﬂ Qutput: None ﬂ
remove-tuple remove duplicates and write R2

81

V Temp Relation

NULL

\

relation name
NULL

v

attribute-names
NULL

M

attr-types

@)Temp Relation

=)

iy

=)

[’]
o
[]
0
-

Q

project

i

2

Input: <<Temp Relation>>, <<Temp Relation>>, result_name
Output:<<Temp Relation>>

union

input: <<Reiation>>,list of the form
(attribute, operator, value), result_name
Output: <<Temp Relation>>

on

Input: <<Temp Relation>>, list of attributes, result_name
Output: <<Temp Relation>>

ion

Input: <<Temp Relation>>, <<Temp Relation>>, result_name
Output: <<Temp Relation>>

difference

=)

Input:<<Teamp Relation>>, <<Temp Relation>>, resuit_name
Output: <<Temp Relation>>

Cartesian product

=)

decompo

N

open Temp

Input: an empty list, the list to be decomposed
Output: decomposed list

lists
Input: an empty list, ihe list to be decomposed

Qutput: decomposed list
Relation

82

V Record

O

attr-types
attr-names
keys
@Record

&)

attr-typ

&

eys

&)

x

Inputs: <<Record>>

Output: <<Record>> with value of attr-types

set to a list of attribute vaiues
es

Input: <<Record>>
Output: none
Uses display primitive o show an instance

ﬂ l of a Record. This method should be
overshadowed by the user of these classes

display-yourself

Input: <<Record>>

Output: <<Record>> with keys set equal to
a list of all attribute names.

Al attributes will be treated as key

Input: <<Record>>
Qutput: primary key value

values unless this method is over-shadowed This method selects the first attribute created

Input: <<Record>>
Qutput; <<Record>> with attr-names set to
a list of attribute names

attr-names

1)

=) =)

input; 2 tuples

Output: None. Suceeds or Fails
Comparas all attributes of two tuples
and determinaes aquality.

input: 2 tuples

Output: None. Suceeds or Fails
Compares all attnbutes of two tuples
and determines inequality.

Input: 2 tuples

Output: None. Suceeds or Fails
Compares first attributes of each
tuple and determines <.

for abjects of this class and returns its value
ﬂ ” as the primary key. This Method should be
OVER-SHADOWED by the user

get primary key

Input: 2 tuples
Output: None. Suceeds or Fails

‘ Compares first atiributes of each
tuple and determines >.
>
.9

Input: 2 tuples

Output: None. Suceeds or Fails
Compares first attributes of each
tuple and determines <.

Input: 2 tuples
ﬂ “ Output: None. Suceeds or Fails
Compares first attributes of each

> tuple and determines 2.

APPENDIX C - SOURCE CODE

@3 Classes

Sm
@0

@_-’~

Application Menu Menu Item Window Window Item

W @

Database Relation Record

&

Temp Relation

V Database

flle name
0

\%

file volume id
0

\Y%

database id
0

Y%

Structure Table |Id
()

temp relation list

@Database
Input: None Input: None ﬂ Input: <<Database>>
ﬂ Output: DBId ﬂ Output: None Output: <<Relation>>
new-db delete-db new-relation
Input: None
input: None l Input: None s Output: None
N Output: DBId Output: None delete-relation
open-db rename-db

Input: None
‘ Input: None SU‘DU:}INM: imili
‘ Output: None ' 565 e Show primitive — o o relation list
to dispiay a list containing
close-db

display-yourseliihe names of all relations
in the Database

85

ZZ0atabase/new-db 1:2

(L e Ll L e
§ .dbf

§1. New Database Name:

@Z2Database/new-db 2:2

L L L L C Ll el S

§1. No file was created, would you like to try again ?

Z2Database/new-db 1:2create table & key 1:1

L)
2 e e e e e e)

§1. Structure Table
§2. (string sensitive unique)
§3. Relation Table

fZ20atabase/new-db 1:2make instance 1:1

"/////./”////I.////”////A’/I//”//I

@e volume ld%
u\b [T
@atabase Idﬁ

Y

2
@tructure Table le

e

87

@ADatabase/open-db 1:3

22 22770
F.db-shutdow §]>333333333333;

ZDatabase/open-db 2:3

L ULl LA e s

§1. No database was selected, would you like to try again ?

@ZZ2batabase/open-db 3:3

e 222 772 2277 770
NULL
DBId

88

EZZ2Database/open-db 1:3select a mode 1:1

L Ll S

.
P e L Ll Ll D

§1. What mode do you want to open the database in?

@Database/open-db 1:3make DB instance 1:1

S S SIS SIS LSS SIS LSS S 1L S A SIS S

Q_ﬂle volum Ia
q\n i
Qda}‘abese lcﬂ

Q.___D A '
Q Structure Table Lg

<<Database>>

§1. Structure Table

89

@Dbatabase/close-db 1:1

'

LSS IS SIS SIS SIS ST

L e |

P Ll L L L D

@ZDatabase/close-db 1:1open file 1:1

LSV SSSSSSSSS SISV IS S 1SS /PSS s

2batabase/delete-db 1:2

LSS S S S S AL S S S S
('sFdB'

Pl L e Ll Ll L Ll

§1. "Are you sure you want to delete the database files associated with the database: *

@ZZDatabase/delete-db 2:2

UL Ll L L P

SSSSLSLS LSS LSS SIS 1SS S /SIS Y s

§1. No database was selected, would you like to try again 7

91

@ZDatabase/rename-db 1:2

L Ll lddd

Pl e dd

§1. Which database do you want to rename ?7
§2. What is the new name for the database ?7

EZDbatabase/rename-db 2:2

L e L L L S

e
%[l[en;‘mo-d%

LLSSSSSS LSS SIS IS S SIS SIS SIS Y

§1. No datbase was selected, would you like to try again ?

92

@Database/display-yourself 1:1

§1. Relation Table

LSS AS LSS S S LA SSS S S SSSSASS

@eurnni D@

Z Structure Table Wla
[+

)
)
& B

Pl LU Ll L D

@2Database/display-yourself 1:1make list 1:1

KL Ll L L M M i LD

P

LLSLISSSS LSS ISV SSSS S /S S L1 s

93

EZbatabase/new-relation 1:2

<<Database>> i

database |

Zt_l:lll s
[Eiet clais namem

[Fnake Relation Inst.l] W

[_z add Relationfogm

@22Database/new-relation 2:2

§1. No Relation selected, would you like to try again?

- i nn——

@batabase/new-relation 1:2get class name 1:1

W

List of tables
that already _{(Record ()
exist in DB

A)
make class

removes "Record®
9 from the list

AL Ll LUl Ll A

§1. Please select the class being stored in this relation.

Z2Database/new-relation 1:2make Relation inst. 1:1

1 Zaltr-:amoé

@rolauon nama
4——p

@auributo-nameﬁ attr-typeg

u\b ~
Quttr-:ypeé
7277777777 777707077

95

EZADatabase/new-relation 1:2add Relation to DB 1:2

database Id’

(sensitive)

Zubloelosﬁ' cc

fl e L L L A

@Z20atabase/new-relation 1:2add Relation to DB 2:2

RN

§1

mg

§1. The database is not opened in the correct mode. Must be in update mode for this to succeed.

@ZDatabase/new-relation 1:2store refation in ST 1:2

Wb
% current DB Zro‘[ltlon namé/

database |d’

()

§1

attach-

chuuor-wrll
A
table-closé] ¢ 0

P L L D

table-ope

§1. Structure Table

EZ20Database/new-relation 1:2store relation in ST 2:2

L 2L 7T 777D

§1. You must be in update mode to perform this operation.

@Z2Database/new-relation 1:2get class name 1:1make eligible list 1:2.

UL ULl L L LS
(J »

.
LSS/ LSS IS SIS 1SS S LSS SIS S S S S o

97

—— ——— e e —— oo

@batabase/new-relation 1:2get class name 1:1make eligible list 2:2

QL L ddd i ddds

. detach-nthZ

Jl L Ll L dd

98

batabase/delete-relation 1:2

Ll L L Ll s

}databuo k@
Qo

>
cccqPverity deletea I X I

SLISSS LSS LSS LS SIS SIS S SIS S S 1S AL

7. do _deletion

§1. "Select the table to be deleted.

Z2Database/delete-relation 2:2

UL L U S

' DB instance

. [o]
Yes E”’%Ildoleu-relatlolﬁ

P Ll L Ll L LD

§1. No table was selected, would you like to try again ?

@Database/delete-relation 1:2verify delete 1:2

L Ll i

Pl LU il D

§1. " and all the keys and data associated with it ?°
§2. "Are You sure you want to delete the table named *

EZ2Database/delete-relation 1:2verify delete 2:2

L Ll e U S
U

§1. Will not be deleted!
§2. "The Relation *

EZ2Database/delete-relation 1:2do deletion 1:1

DB id Relation name to
be deleted

[]remove from STD Z"b"'d""%
°

SLISLSILSS SIS LSS IS LSS SIS S S s

100

ZZbatabase/delete-relation 1:2do deletion 1:1remove from ST 1:1

UL L L Ll L LD
] *

chustor-doletﬂ
1 o CCU’ [+

Ztablo-closg

Yl Ll il L D)

§1. Relation name
§2. Structure Table

101

Qatabase/temp relation list 1:1

LU Ll s

thp roaﬂon lla’ﬂ

&temp mglo _lisg

102

V Record

e

attr-types

O

attr-names

O

keys
@ Record

Inputs: <<Record>>
Output: <<Record>> with value of attr-types

@ set to a list of attribute values

attr-types

Input: <<Record>>

Output: none

Uses display primitive to show an instance
of a Record. This method shouid be
overshadowed by the user of these classes

&l

display-yourself

Input: <<Record>>

Output: <<Record>> with keyys set equal to
a list of all attribute names.

Al attributes will be treated as key

values unless this method is over-shadowed

¢l

=
[]
[]

Yy
tnput: <<Record>>
Output: <<Record>> with attr-names set to

g; a list of attribute names

attr-names

=)

get

input: 2 tuples

Output: None. Suceeds or Fails
Compares all atiributes of two tuples
and determines equality.

Input; 2 tuples

j Output: None. Suceeds or Fails
@ Compares all attributes of two tuples
and determines inequality.
E 3
Input: 2 tuples
Output: None. Suceeds or Fails
@ Compares first attributes of each
tuple and determines <.
<

Input: <<Record>>

Output: primary key value

This method selects the first attribute created
for objects of this class and returns its value
as the primary key. This Method should be

@l OVER-SHADOWED by the user

primary key

>

Input: 2 tuples

Output: None. Suceeds or Fails
Compares first attributes of each
tuple and determines >.

input: 2 tuples
Output: None. Suceeds or Fails

‘T
@” Compares first attributes of each
¥ tuple and determines s.
<

Input: 2 tuples

Output: None. Suceeds or Fails
Compares first attributes of each
tuple and determines 2.

103

@Record/atir-types 1:1

LSS S LSS IS SIS IS LSS LSS ST
<<Record>>

attributesd

LSS S LS AL SIS s

QRecord/attr-types 1:1get types 1:1

L L Ll L il P
* LJ

L)
SLSSSSSLSSSSSISS AL SSSSSSSSS LSS LSS S s

104

@Record/attr-names 1:1

L Ll i

attr-name ¢/

QRecord/keys 1:2

////////////}//”////A///////////”/.

Record/keys 2:2

=

(o]
Qlaﬂr-namoﬁ

P Ll L Ll L L Ll

105

@2Record/display-yourself 1:1

L L Ll S

SIS SIS LSS LSS AT LSS /A S/ S

@2Record/get primary key 1:1

o 1

SLSSISSLILSSSSSSS SIS S S S S/ S S Y

106

@Record/= 1:2

() tuple 1 () tuple 2

make lis ‘make lis

P L L LU Ll D

@2Record/= 2:2

22 27 Z22e 202202l D

tuple 1 tuple 2

W

107

DRecord/ = 1:2

tuple 1 tuple 2

(2277222222022 222272

@2Record/ = 2:2

Q222 I 2

tuple 1 tuple 2

m

108

@ARecord/< 1:2

tuple 1 3 %wple 2
el i

Zatr-nama

Jattr-name

P e UL Ll L Ll

109

@2Record/> 1:2

detach- detach-V

> b ¢

LIS 1SS/ S LIS SIS S LA L S S S S Y s

@2Record/> 2:2

2222277 ild

tuple 1 tuple 2

m

110

@Record/< 1:2

tupl 1i %tuplez
V. B ¢

LLSLLSLLSSALL LSS S SIS LSS S S S S o

@2Record/¢ 2:2

Q222272 0200777

tuple 1 tupie 2

mmzzmm@

m

—

@Record/2 1:2

attr-name¢ antt-nlmo@

detach- detach-

2 x

SILSSSS LSS SIS OL SIS SIS SIS s

@Record/: 2:2

22 eI g Il 7P

tuple 1 tuple 2

m

112

V Relation

relation name
NULL

V

attribute-names

)

%

attr-types

@Relation

Input: <<Relation>> . .
. Input: <<Relation>>, <<Relation>>, result_name
Output: Tableld .
Output:<<Temp Relation>>
open table

Input: <<Relation>> list of the form

Input: <<Relation>> (attribute, operator, value), result_name
Output: Primary key Id, Table Id Output: <<Temp Relation>>

2

open to first tuple selection
Input: <<Relation>>, list of attributes, result_name
fnput: DBId Output: <<Temp Relation>>
Output: Tableld
select-relation projection
input: <<Relation>> Input: <<Relation>>, f<Relation>>, result_name
g Output: None g Output: <<Temp Relation>>
display-yourself difference
Input: name, <<Relation>> Input:<<Relation>>, <<Relation>>, resull_name
@ Output: <<Temp Relation>> Output: <<Temp Relation>>

make Temp Relation Cartesian product

? | Input: Table Id, tuple Input: <<Relation>>, <<Relation>>
L- Output: None @ Output: <<Relation>>, <<Relation>>

verify unlon compatibility

;W Input: <<Relation>>, Cluster 1D
Output: None @

remove-tuple remove duplicates and write R2

113

@Relation/open table 1:1

W

<<Relation>>
4

)
relation naméj

P el L L

114

@nRelation/open to first tuple 1:1

<Re|at|on>
anaﬂon mma

databan I

115

@2Relation/select-relation 1:2

§1. Select the Relation you wish to open.

@2Relation/select-relation 2:2

§1 DBId

DBid

Q
X})>>¥/lopen-tablé/

§1. No table was selected, would you like o try again ?

116

@2Relation/display-yourself 1:1

W

«Relgtion»

’__11@

~primary key

Zkoy-tlro?

cceeececce 0 ®

llopen

y e — A‘ﬁ——«——j
Ztablo-clocéccccc do all records l'
L7

SLILSSS IS/ AS LSS 7S SIS PT SIS S/ s

@2Relation/display-yourself 1:1do all records 1:1

key-road

0 :n:;:u:;::»hn::: key-nex

. displayZ

D\

117

@ZRelation/make Temp Relation 1:1

X User selected Relation 1
¢'Flelation name

It . lati lis%
Qemp roon on %

(¢]
&Temp Relatior)
q———-n

@nhtlo ﬁnma

@gtgrlbu‘to_—qamqa

118

c—— —— [P - --

@2Relation/add-tuple 1:1

cluster-writ
Q Lo

YL L L Ll Ll LD

@2Relation/add-tuple 1:1make key value list 1:2

UL Ll L L L e

Check to see if

there are any keys
associated with this
table. If not return NULL

Zattach-o

* L]
LSV SSSSLISSSSISAS SIS A S 1SS 1SS Y

@2Relation/add-tuple 1:1make key value list 2:2

R I g 70D

key list

NULL

/////////”///////////////;/V//////t u

119

@Relation/remove-tuple 1:1

E«Relatiort» ii tuple (Cluster ID)
\ ’
Zrohtlon nlmé
[+]

Zt.b||¢|°.é cccthcluur-dolna
L]

QL2277 727 222272277

120

@Relation/union 1:2

<<Relation 1>> <<Relation 2>> result name
2 2777073
L] L) -

zllvorlfy

. <<Temp Relation>>
[Eopen Temp Relagl_on]]ﬂ

[Zmake R2 lista] lﬁwrite A1 to Temp Ral

/Temp List of every
Relation tuple in R1

//remove duplicales and write

I

@Z2Relation/union 2:2

2l 77T 707 7P

<<Relation 1>> <<Relation 25>

NULL

<<Temp Relation>>

§1. The two ralations are not union compatible

121

@Z2Relation/union 1:2make Temp Relation 1:1

User selected Relation 1
Relation name

@tomp relation Ilc’ﬁ
[+

Q
&Temp Relatior)
u-—--n

&relation naméj %-ur-tfg.g’
@aur-t oo %altrlbuu-namoa

@urlbut‘o-namo@

A —

@22Relation/union 1:2open Temp Relation 1:1

<<Temp Relation>>

Zrelatlon nama

‘ -prlinary key

. .

122

@Relation/union 1:2write R1 to Temp R 1:1

%Ilogon to first tupla

A
ead & write

u Ly
table-clos

List of every
instance in R

Temp
Relation

@2Relation/union 1:2make R2 list 1:1

first tupl§

llopen

9,
’JJJJ
2,

Ztablo-closﬁ

SLSSSL AL LSS SIS IS SIS SIS SIS S SIS s

123

@ZZRelation/union 1:2open Temp Relation 1:1create temp relation tabie 1:1

LSS SIS S SIS S TS S S S ST S S SSS
19

ﬁatabaso
O

[l L L D

@ZRelation/union 1:2write R1 to Temp R 1:1read & write 1:1

key-nex W

attach-ra

(°1°)

cluster-writ

O [+
////////7/////3’///5/}//////////7/////7////”///////7/.

124

@2Relation/union 1:2make R2 list 1:1make list 1:2

L Ll Ll e s

ZZRelation/union 1:2make B2 list 1:1make list 2:2

UL I L Ul Ll S
(J &/ J

7
name

P e A L L L L D

@ZRelation/union 1:2make R2 list t1:1make list 1:2do all instances 1:1}

L L L L L e L e e LD

////////7///7/.///A/I//////////V/////.

125

@2Relation/union 1:2make R2 list 1:1make list 2:2do all lists 1:1

L UL L P P
. L *

Pl T T 7777 7770777777777 77) 7

126

@2Relation/selection 1:1

2 2 L 22 T Pl 277 77773
Celat - ¥ result_name
—<<Relation>> list

Zaurlbuu-nnmoﬁ m [Emake Temp Rela!iona]

<Relation>

%Ilopon to first tuplﬁ
* o]

ZRelation/selection 1:1make Temp Relation 1:1

User selected Retation 1
Relation name

@.. rolahon |lsﬁ

QTomp oRolatloA@
b
@rolatlon nam@

Zaur_lbuto-namo@
r'_’____",/—"

@aurlbuu-namoﬁ

attr-type

127

@ARelation/selection 1:1open Temp Relation 1:1

3 <<Temp Relation>>

Zrohuon nam%

[Ecraate temp relation _tgblei]n:%uos'n tablg

-prlrhary key

, key-openZ

@2Relation/selection 1:1fix operation 1:1

SSSSS 1S SLSS LSS SIS S SIS LSS/

////////V/////V///////.//////////V//A

128

@2Relation/selection 1:1get the tuples 1:2

key-rea

2b5335 ,,V//////,_

cluster-writgfcgecccceccecc X

P i

ULl UL Ll L L L L LU UL LI L i)

@2Relation/selection 1:1get the tuples 2:2

LU Ll L Ul Ll S

/////A’/////.///////////A////////////.

@ZRelation/selection 1:1open Temp Relation 1:1create temp relation table 1:1

@. current D@
Zdatabnse I%

WL L L L L D

129

@ZZRelation/projection 1:1

UL Ll Ll s

<<Relation>> atiribute list~__result_name

make temp relation
Termip Relation inst.

[Eopen Temp Relation]]
P
Table id

Temp Relation instance

LSS IS SIS SIS SIS S LSS LSS SIS LSS S S S

EZ2Relation/projection 1:1make temp relation 1:2

7 7 7 7777727 777777774
o LJ - L)
Relation

attribute list

d

@relaﬁon namg

@aurlbuu-namoa

~

@attr-typoa

make types list
3

130

@Relation/projection 1:1make temp relation 2:2

LA/ A A

Relation attribute list

ez)

§1. One of the attributes selected does not exist in the selected Relation

@2Relation/projection 1:topen Temp Relation 1:1

5 <<Temp Relation>>

Ztelatlon nama

[Ecreate temp relation tablei]n:%op.n tablej

~primary key
7, key-open/

@2Relation/projection 1:1process all tuples 1:1

Zkey-uadz

— -39,
0 E}»”DJ” 333333p333] [Ewrite values to Temp Relationﬂ]
9
"J_)

Table id

131

P Ll T 2L L7722

@2Relation/projection 1:1make temp relation 1:2check attributes 2:2

UL L 77 P
* J L]

§1. does not exist in the specified relation.
§2. The attribute:

@2Relation/projection 1:1make temp relation 1:2make types list 1:1

UL LU Ll T I A P

Pl L AT el 0D

132

@ZZRelation/projection 1:1open Temp Relation 1:1create temp relation table 1:1

LT

~primary Kkey

Pl L LT L L A

@2Relation/projection 1:1process all tuples 1:1write values to Temp Relation 1:1

UL Tl A Ul e il b

attribute list
— ’ — C"-)

l ‘get all attributes I
¢

cluster-writé
[+] [2]

PLL L L L e L Ll A

Relation/projec!ion 1:1process all tuples 1:1write values to Temp Relation 1:1get all attributes 1:1

LSS S AL/ I LSS LA S PSS
\/ 4 *

attribute list

QL L L a Ll e LD

133

@Relation/difference 1:1

LU Ll L U L L L L L Ll L Ll S
\d » *

3 X

v, * ﬁ
Ciiverity union eomputlbm@:n%!lm.k.‘J.m}, Rol-tlo@

J o]
<Relation>\ \<Relation>
-

Z

%I_gpon__‘to first tupli
Keyld Tableld ° ()

@2Relation/difference 1:1R2 to list 1:2

key-read;

0 Xpp3Fiist 4

3)
2do instances

134

@2Relation/difference 1:1R2 to list 2:2

LU L i

) relation name

== =1

do list es
2 &)

*
SLASSSASSS L1/ SS IS S IS SIS 1SS S s

@Relation/difference 1:1build Temp R 1:2

UL L Ll i P72 P
~J—— .

if there is a tuple in
x| R2 that equals the current
fuple, this methd fails

compare {o all of R2

cluster-writ
Q L*]

@Z2Relation/difference 1:1build Temp R 2:2

UL Ll L L L 7D

LIIII ISP I PP LA I AT II I,

@ZRelation/difference 1:1R2 to list 1:2do instances 1:1

LUl Ll LS

. .
SISSSLAS S SSE LSS LSS SIS SIS

@2Relation/difference 1:1R2 to list 2:2do list types 1:1

key-rea
0 [XPr323oPY ::Zkey-nox@
> 335

list-to-ins

Pl L L e L LD

@ZRelation/difference 1:1build Temp B 1:2compare to all of R2 1:2

UL L Ll L e LD

P L L U L e L P

136

Relation/difference 1:1build Temp R 1:2compare to all of R2 2:2

gl 2D

m

137

@2Relation/Cartesian product 1:1

2777777777773
<<Relation>> I\

<<Relation>>

Gliopen table] [E‘mako Temp relanona] <<Relation>>

-prlmary key /\ @Igpon htﬁ

<<Temp Relallon» -prlmary key

result_name

355
JJ,
234,

|

e e A L e e el L D

@2Relation/Cartesian product 1:1make Temp relation 1:1

SISSS SIS LSS SIS IS S SIS SIS SIS S S S SIS S SIS S S PSS SIS SIS S VSIS Y

Zantlbuto-namoa Zattrlbuto-namo@

QTomB Relatio@

@ttrlbuto-nme@

‘attr-types

%MW

§1. relation name

138

@Relation/Cartesian product 1:1process tuples 1:1

L L L L e Lt d s
Ld \J L

R2 Keyld

Pl L Ll L L L L L Ll D

@Z2Relation/Cartesian product 1:1process tuples 1:1process Relation 2 1:2

UL L L L P
L) L/ (d

A
(e 2L

LA
&cluster-wrli"

O [+

139

@2Relation/Cartesian product 1:1process tuples 1:1process Relation 2 2:2

(L Ll L L Ll ddd S

LSS SIS 1S SIS S S S S S 1SS o

140

@ZRelation/verify union compatibility 1:1

/Z check # of altribmesm
.d
J—

SLSLSS/S AL IS SSLLS SIS S LSS 1S S SIS s

@2Relation/verify union compatibility 1:1check # of attributes 1:2

<<Relation>> <<Relation>>

SISSSISSISSS 1SS SIS IS SIS S SIS

@2Relation/verify union compatibility 1:1check # of attributes 2:2

<<Relation>> <<Relation>>
§1

m

§1. Relations do not have the same number of atiributes, and cannot be unioned together.

141

— - s e — - — - n . ——

@Relation/remove duplicates and write R2 1:2

L L L e dd S

QL L L L L Ll

@2Relation/remove duplicates and write R2 2:2

LA/ A A

P LALLM L LD

@Z2Relation/remove duplicates and write R2 1:2compare all 1:2

L M L S
(d *

QUL Ll L Ll D

E2Relation/remove duplicates and write B2 1:2compare all 2:2

LA LA A A
mm

142

V Temp Relation

<z

relation name

<

attribute-names

<

attr-types

@Temp Relation

Input: <<Temp Relation>>, <<Temp Relation>>, result_name
Output:<<Temp Relation>>

[

c
3
o
3

Input: <<Relation>> list of the form
(aftribute, operator, value), result_name
Output: <<Temp Relation>>

=)

[]
[]
[]
1]
P
Qo
3

Input: <<Temp Relation>>, list of attributes, result_name
Output: <<Temp Relation>>

&)

h-J
-
Q

—
[]
0
-
Q
3

Input: <<Temp Relation>>, <<Temp Relation>>, resuit_name
Output: <<Temp Relation>>

2

Q.
=
-
[]
-
[]
3
(1]
[]

Input:<<Temp Relation>>, <<Temp Relation>>, result_name
Output: <<Temp Relation>>

Cartesian product

[

Inpul: an empty list, the list to be decomposed
Output: decomposed list

decompose lists

=)

Input: an empty list, the list to be decomposed
Output: decomposed list

open Temp Relation

2

143

@Temp Relation/union 1:2

<<Relation 1>> <<Relation 2>> result name
222727773

@vorlly union eompotlbjjjﬂf}”%{l_m.koﬂ‘Tgmy Relatio]

llopen Temp Rolatloﬂ

make R2 list write R1 to Temp R

Temp List of every
tuple in R1

list

)
//decompose
v

=3 D
l remove duplicates from R2 |

333333335 ’Ztahlo-closz
A\

P Ll L D

@ZTemp Relation/union 2:2

2 22772 777 277D

<<Relatior<<Relation 2>>

NULL

<<Temp Relation>>

§1. The two relations are not union compatible

144

_
@2ZTemp Relation/union 1:2

<<Relation 1>> <<Relation 2>> result name
27 777 77 22777 777773

Zl!verlfy union compatlbillﬁ_"_}”%]lm._g.‘Torpp Rolaﬂoﬁ

Zllopen Temp Rolutloﬂ

make R2 list write R1 to Temp R

Temp List of every
tuple in R1

)
//idecompose
9

L\

LSS/ SS SIS S SIS SSPS S A S A AT o

@ZTemp Relation/union 2:2

2l 77D

<<Relatior <<Relation 2>>

NULL

! <<Temp Relation>>

§1. The two relations are not union compatible

@Temp Relation/union 1:2write BRI to Temp R 1:1

leopon to first tuplﬁ
Y Y

Temp List of every
Relation | | instance in R
(772277l 777 77777

@22T7emp Relation/union 1:2make R2 list 1:1

aa
Grmolcs 150)
5, (870

')
9
5,

Ztable-closg

L]
LSS SSSSASSSS SIS IS 1SS IS S S SIS o

146

@ZZ2Temp Relation/union 1:2remove duplicates from R2 1:2

LSS 1SS SIS LSS SIS S S S S S S/

@ATemp Relation/union 1:2remove duplicates from R2 2:2

UL L Ul L

L]
P o LT L D

@ZTemp Relation/union 1:2make R2 list 1:1make list 1:2

LU L L L il

P Ll L L L

147

@Z2Temp Relation/union 1:2make R2 list 1:1make list 2:2

e —

LS LSS S SIS SIS SIS S S S S /S S 1SS
L)

[l Ll Ll D

@22Temp Relation/union 1:2remove duplicates from R2 1:2compare all 1:2

LIS LSS LSS SIS S S LSS S SIS
4 L)

LASSSSSSAS SIS LSS SS LIS S AL S SS /1Y o

@2Temp Relation/union 1:2remove duplicates from R2 1:2compare all 2:2

2 7P 70D
mmg

148

@Z2Temp Relation/selection 1:1

P77 7773
e ¥ result_name

Zattribute-name ¢ v v 7
@mako Tomp Rolatlo:ﬂ

Relation S y3*

)] ::,3””””) <<Tef Relation>>

> Palbal i

%”W" to ""'o tupl® zllopon Temp Relatiof]

== £1=4€) {)
get the tuples
&7 & &

:nanglo-elos@

0

@2T7emp Relation/selection 1:1get the tuples 1:2

UL L L e e i o e L L

. . L) L) L]
P L el Ll L M Ll e U A L e L e i LD

@27emp Relation/selection 1:1get the tuples 2:2

UL Lt g L e I LD

W T P o7

149

ro———— o - —— -

@Temp Relation/projection 1:1

22 777777
attrigﬂum list resuli_name

<<Relation>>

3333333239333 F make temp relation

Temp Relation inst.

[Eopen Temp Relaliogﬂ
P4
Table id

Temp Relation instance

SLLSISS LS SIS AL LSS SIS LS LSS SIS LSS SIS S

@2Temp Relation/projection 1:1make temp relation 1:2

L L O L i ot T Ll P
L) * L)

) Relation
. attribute list
. (Zgjtrlbuto-namo@
& Itemp relation lis] Y -~
o L]

relation nam

SISSSS SIS SIS SIS LSS 1 PSS

@T1emp Relation/projection t:1make temp relation 2:2

222270227 22222D

Relation attribute list

§1. One of the attributes seiected does not exist in the selected Relation

@Temp Relation/projection 1:1open Temp Relation 1:1

<<Temp Relation>>

Zrelatlon namﬁ

[E create temp relation tableﬂ:n%//gg.n (.HQ

_ ~primary key
key-opo 7.

@Temp Relation/projection 1:1process all tuples 1:1

aurlibule list Table id

N o)
33> &write values to Temp Relationﬁ]

151

r—————— —_—

@Temp Relation/projection 1:1make temp relation 1:2check attributes 1:2

Ll Ll D

Pl Ll Ll Ll D

@Temp Relation/projection 1:1make temp relation 1:2check attributes 2:2

UL L L Ll L LS

§1. does not exist in the specified relation.
§2. The attribute:

@2Temp Relation/projection 1:1make temp relation 1:2make types list 1:1

LAY LSS LSS S A A S AL LS S A S S A S

Pl L Ll Ll Ll D

152

o

Temp Relation/projection 1:1open Temp Relation 1:1create temp relation table 1:1

L Ll s

~primary key

SSSLASIS/SISSS LIS SS SIS SIS S

Temp Relation/projection 1:1process all tuples 1:iwrite values to Temp Relation 1:1

attribute list
G+

get all attributes
4

cluster-writ
[} Q

L L Ll L T L DD

Temp Relation/projection 1:1process all tuples 1:1write values to Temp Relation 1:1get all attributes 1:1

27 7 7 77 777
UJ L] L)
attribute name

SL/LSSSSSSSSISS SIS SIS 1SS A SIS S S

153

- — — e a s - B

@2Temp Relation/difference 1:1

N L U L L e L e U Ul L d da L s
L U L]

) X

union compatibilii

0 N o | -
32>¥% /imake Temp Relatiod

<Relation>

<Relation>

/lopen to first tup) llopen to first tuplf

Keyld Tableld 0O

Relatio

o

@2Temp Relation/difference 1:1R2 to list 1:2

UL L Ll Y,
UJ

= I =1
3/ &/

///”////6’////”/.///////11//////A//‘

154

e —

ZTemp Relation/difference 1:1R2 to list 2:2

LU Ll L L s

—f)———— i)
I' do list ‘-ﬂﬂ
7, &/

L]
SL/LALLSS LSS SIS S S /S,

@22Temp Relation/difference 1:1R1 to list 1:1

LU Ll U L 2 il

,chy-nex@

koy-road

///A’/////////////;/#/////V/////Y//4

@21emp Relation/difference 1:1write BR1 - R2 to Temp R 1:2

()

’ (L]
Zlist to simple types

RN

Ged)
compare all{1X
(‘(‘L

L-.-
d.‘-(‘ ("1")

4

cluster-writ
[*]

155

@ZTemp Relation/difference 1:1write R1 - R2 to Temp R 2:2

UL T il d S

//////////./////////////////////////A

@2Temp Relation/difference 1:1R2 to list 1:2do instances 1:1

L UL L i el

////////////7/;/////////7////”/////-

@Temp Relation/difference 1:1write R1 - R2 to Temp R 1:2list to simple types 1:2

IS SIS LSS SIS SIS SIS SIS

@lnstnco?ﬂ’ﬂ

L)
SSSSSSSSSISSS SIS SSSS S LSS 1SS S S 1S

@2Temp Relation/difference 1:1write R1 - R2 to Temp R 1:2compare all 1:2

"///////V/////Y//////////Af/////////
g

SLSTSSSSSS VIS LIS S SIS S LSS Y o

@2Z7emp Relation/difference 1:1write R1 - R2 to Temp R 1:2compare all 2:2

N2/ /B AL A A
mmm

157

@2Temp Relation/Cartesian product 1:1

[_Zmake Temp relationa] <<Relation>>

~primary key)\ .
. <<T621p Rela\tion»@"?’" hblﬁ

LILSSISSLSSS LSS A LSS S S SIS SS SIS SIS IS SIS s

@Z2Temp Relation/Cartesian product t:1make Temp relation 1:1

@Itemp rela!lo llsj@
0

QTemE Relatlol!?

@aurlbute-n

ame?)

’;Hr-Qy o

§1. relation name

158

Temp Relation/Cartesian product 1:1process tuples 1:1

L7 LI L il L Ll Ml
* LJ L]

Temp R Tableld R2 Keyld

c cékoy-!lrcg

LIISSSSSISSSSSSS LSS 1SS S LSS S SIS S 1SS 1SS SIS S s

@Temp Relation/Cartesian product 1:1process tuples 1:tprocess Relation 2 1:2

L U Tl P

inst-to-lis

N

@clustor-wrn ¢

159

@2Temp Relation/Cartesian product 1:1process tuples 1:1process Relation 2 2:2

LIS IS SIS ST SIS SIS SIS 1SS

LI/SASSSIS SIS SIS S 1SS S OIS s

160

@ZTemp Relation/decompose lists 1:1

SSSSSLISISS LSS AL SIS/ LSS IS SIS s

@2Temp Relation/decompose lists 1:1list to simple types 1:2

UL A A P 2B
L) L)

///////////l//////.//////V////A’//////‘

161

———— . —— . — - - ——— - - —

@ZTemp Relation/open Temp Relation 1:1

<<Temp Relation>>

Zrolntloh nama

[Epreate temp _relalioﬁ tab[qi}>>>>%logon lablé

~primary key

Wb

@Z2Temp Relation/open Temp Relation 1:1create temp relation table t:1

s

jdatabase I :

Pl LA L L e T 0D

162

[Alag86]

[Booc91]

[Codd70]

[ENg9]

[FN92a]

[FN92b]

[Kim91]

[Meye88]

[Mica88]

[Nels88]

[Nels90a]

LIST OF REFERENCES

Alagic, S., Relational Database Technology, Springer-Verlag, 1986.

Booch, G., Object-Oriented Design with Applications, The Benjamin/
Cummings Publishing Company, Inc., 1991.

Codd, E., “A Relational Model for Large Shared Data Banks”,
Communications of the ACM, June 1970.

Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., 1989.

Naval Postgraduate School Report NPSCS-92-005, The Feasibility of
Implementing a Relational/Object-Oriented Database Management System
in the Gemstone Object-Oriented Database Management System, by Filippi,
S. C., and Nelson, M. L., April 1992 (draft).

Naval Postgraduate School Report NPSCS-92-006, The Feasibility of
Implementing Conventional Database Models in an Object-Oriented

Database Management System, by Filippi, S. C., and Nelson, M. L., May
1992 (draft).

Kim, W., “Object-oriented database systems: strengths and weaknesses”,
JOOP, July/August 1991.

Meyer, B., Object-oriented Software Construction, 1988.

Micallef, J., “Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages”, Journal of Object-Oriented
Programming v 1, April/May 1988.

Nelson, M. L., A Relational Object-Oriented Management System and An
Encapsulateed Object-Oriented Prograsmming System, Fh.D Dissertation,
University of Central Florida, Orlando, Florida, December 1988.

Naval Postgraduate School Report NP§52-90-024, An Introduction to
Object-Oriented Programming, by Michael L. Nelson, Aprii 1990.

163

[Nels90b]

[NMO90]

[NMO91]

[Onto88]
[Onto90]

[PK90]

[PBRV9OQ]

[Serv89a]

[Serv89b]

[Spead2]

[SB86]

[TGS88a]

[TGS88b]

Naval Postgraduate School Report NPS52-90-025, Object-Oriented
Database Management Systems, by Michael L. Nelson, May 1990.

Nelson, M. L., Moshell, J. M., and Orooji, A., “A Relational Object- .
Oriented Management System”, 9th Annual International Phoenix

Conference on Computers and Communications (IPCCC *90) Proceedings,

March 1990.

Nelson, M. L., Moshell, J. M., and Orooji, A., “The Case For Encapsulated
Inheritance”, Proceedings of the 24th Annual Hawaii International
Conference on System Sciences (HICSS-24), Vol II:Software Technology,
January 1991.

Ontologic Inc., VBase: For Object Applications, 1988.

Ontologic Inc., Ontos Object Database Documentation, Release 1.5, 1990.

Perry, Dewayne E., and Kaiser, Gail E., “Adequate testing and Object-
Oriented Programming”, JOOP, January/February 1990.

Premeriani, W. J,, Blaha, M. R,, Rumbaugh, J. E., and Varwig, T. A, “An
Object-Oriented Relational Database”, Communications of the ACM,
November 1990.

Servio Logic Development Corporation, Programming in OPAL, Part I,
1989.

Servio Logic Development Corporation, Programming in OPAL, Part II, The
OPAL Kernel Classes, 1989.

Spear, R., A Relational Object-Oriented Database Management System,
Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1992 (draft).

Stefik, M. and Bobrow, D. G., “Object-Oriented Programming : Themes and
Variations”, The AI Magazine, v 6, Winter 1986.

The Gunakara Sun Systems, Prograph Tutorial, 1988. .

The Gunakara Sun Systems, Prograph Reference,1988.

164

[TGS91]

[Wegn87]

[Wu90]

[ZM90]

The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

Wegner, P. , “Dimensions of Object-Based Language Design”, OOPSLA ‘87
Conference Proceedings, October 1987.

Wuy, C. T., “Development of a Visual Database Interface: An Object-
Oriented Approach”, Application of Object-Oriented Programming [PW90],
1990.

Zdonick, S. B. and Maier D., “Fundamentals of Object-Oriented Databases”,
Readings in Object-Oriented Database Systems, 1990.

165

[Beec88]

[BZ87]

[KBCG87]

[KBCGB88]

[KL89]

[LHRSS]

[PW90]

[Rumb87]

[SZ87])

[Snyd86]

[WW89]

BIBLIOGRAPHY

Beech, D., “Intensional Concepts in an Object Database Model”, OOPSLA
Conference Proceedings, September 1988.

Bloom, T., and Zdonik, S. B., “Issues in the Design of Object-Oriented
Database Programming Languages”, OOPSLA Conference Proceedings,
October 1987.

Kim, W., Banerjee, J., Chou, H., Garza, J. F., and Woelk, D., “Composite
Object Support in an Object-Oriented Database System”, OOPSLA '87
Conference Proceedings, October 1987.

Kim, W., Ballou, N., Chou, H., Garza, J. F., and Woelk, D., “Integrating an
Object-Oriented Programming System with a Database System”, OOPSLA
‘88 Conference Proceedings, September 1988.

Kim, W., and Lochovsky, F. H., Object-Oriented Concepts, Databases, and
Applications, Addison-Wesley Publishing Company, 1989.

Lieberherr K., Holland, I. and Riel, A., “Object-Oriented Programming: An
Objective Sense of Style”, OOPSLA '88 Conference Proceedings,
September 1988.

Pinson, L. J. and Wiener R. S., Application of Object-Oriented
Programming, Addison-Wesley Publishing, 1990 .

Rumbaugh, J., “Relations as Semantic Constructs in an Object-Oriented
Language”, OOPSLA ’87 Conference Proceedings, October 1987.

Smith, K. E., and Zdonik, S. B., “Intermedia: A Case Study of the
Differences Between Relational and Object-Oriented Database Systems”,
OOPSLA '87 Conference Proceedings, October 1987.

Snyder, A., “Encapsulation and Inheritance in Object-Oriented Programming
Languages”, OOPSLA Conference Proceedings, October 1986.

Wirfs-Brock, R. and Wilkerson, B., “Object-Oriented Design: A

Responsibilty Driven Approach”, OOPSLA '89 Conference Proceedings,
October 1989.

166

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Computer Science Dept.
Computer Science Departinent
Naval Postgraduate School
Monterey, CA 93943-5002

Maj M. L. Nelson, USAF, Code CS/Ne
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5002

C. Thomas Wu, Code CS/Wq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

Dr. A. Orooji

Computer Science Department
University of Central Florida
Orlando, FL 32816

Stephen C. Filippi, LT/USN

101 Bantry Drive
Lake Mary, FL 32746

167

